ترغب بنشر مسار تعليمي؟ اضغط هنا

The rainbow connection number of enhanced power graph

122   0   0.0 ( 0 )
 نشر من قبل Luis A. Dupont
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a finite group, the enhanced power graph of $G$, denoted by $Gamma_G^e$, is the graph with vertex set $G$ and two vertices $x,y$ are edge connected in $Gamma_{G}^e$ if there exist $zin G$ such that $x,yinlangle zrangle$. Let $zeta$ be a edge-coloring of $Gamma_G^e$. In this article, we calculate the rainbow connection number of the enhanced power graph $Gamma_G^e$.



قيم البحث

اقرأ أيضاً

Let $k$ be a positive integer, and $G$ be a $k$-connected graph. An edge-coloured path is emph{rainbow} if all of its edges have distinct colours. The emph{rainbow $k$-connection number} of $G$, denoted by $rc_k(G)$, is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by $k$ internally vertex-disjoint rainbow paths. The function $rc_k(G)$ was introduced by Chartrand, Johns, McKeon and Zhang in 2009, and has since attracted significant interest. Let $t_k(n,r)$ denote the minimum number of edges in a $k$-connected graph $G$ on $n$ vertices with $rc_k(G)le r$. Let $s_k(n,r)$ denote the maximum number of edges in a $k$-connected graph $G$ on $n$ vertices with $rc_k(G)ge r$. The functions $t_1(n,r)$ and $s_1(n,r)$ have previously been studied by various authors. In this paper, we study the functions $t_2(n,r)$ and $s_2(n,r)$. We determine bounds for $t_2(n,r)$ which imply that $t_2(n,2)=(1+o(1))nlog_2 n$, and $t_2(n,r)$ is linear in $n$ for $rge 3$. We also provide some remarks about the function $s_2(n,r)$.
An edge-colored connected graph $G$ is properly connected if between every pair of distinct vertices, there exists a path that no two adjacent edges have a same color. Fujita (2019) introduced the optimal proper connection number ${mathrm{pc}_{mathrm {opt}}}(G)$ for a monochromatic connected graph $G$, to make a connected graph properly connected efficiently. More precisely, ${mathrm{pc}_{mathrm{opt}}}(G)$ is the smallest integer $p+q$ when one converts a given monochromatic graph $G$ into a properly connected graph by recoloring $p$ edges with $q$ colors. In this paper, we show that ${mathrm{pc}_{mathrm{opt}}}(G)$ has an upper bound in terms of the independence number $alpha(G)$. Namely, we prove that for a connected graph $G$, ${mathrm{pc}_{mathrm{opt}}}(G)le frac{5alpha(G)-1}{2}$. Moreoevr, for the case $alpha(G)leq 3$, we improve the upper bound to $4$, which is tight.
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e dges have different colours). The systematic study of such problems was initiated by Keevash, Mubayi, Sudakov and Verstraete. In this paper, we show that the rainbow Turan number of a path with $k+1$ edges is less than $left(frac{9k}{7}+2right) n$, improving an earlier estimate of Johnston, Palmer and Sarkar.
An edge-cut $R$ of an edge-colored connected graph is called a rainbow-cut if no two edges in the edge-cut are colored the same. An edge-colored graph is rainbow disconnected if for any two distinct vertices $u$ and $v$ of the graph, there exists a $ u$-$v$-rainbow-cut separating them. For a connected graph $G$, the rainbow disconnection number of $G$, denoted by rd$(G)$, is defined as the smallest number of colors that are needed in order to make $G$ rainbow disconnected. In this paper, we first give some tight upper bounds for rd$(G)$, and moreover, we completely characterize the graphs which meet the upper bound of the Nordhaus-Gaddum type results obtained early by us. Secondly, we propose a conjecture that $lambda^+(G)leq textnormal{rd}(G)leq lambda^+(G)+1$, where $lambda^+(G)$ is the upper edge-connectivity, and prove the conjecture for many classes of graphs, to support it. Finally, we give the relationship between rd$(G)$ of a graph $G$ and the rainbow vertex-disconnection number rvd$(L(G))$ of the line graph $L(G)$ of $G$.
157 - Lin Chen , Xueliang Li , Henry Liu 2016
An edge-coloured path is emph{rainbow} if all the edges have distinct colours. For a connected graph $G$, the emph{rainbow connection number} $rc(G)$ is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connect ed by a rainbow path. Similarly, the emph{strong rainbow connection number} $src(G)$ is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by a rainbow geodesic (i.e., a path of shortest length). These two concepts of connectivity in graphs were introduced by Chartrand et al.~in 2008. Subsequently, vertex-colour
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا