ﻻ يوجد ملخص باللغة العربية
We have investigated the disorder of epitaxial graphene close to the charge neutrality point (CNP) by various methods: i) at room temperature, by analyzing the dependence of the resistivity on the Hall coefficient ; ii) by fitting the temperature dependence of the Hall coefficient down to liquid helium temperature; iii) by fitting the magnetoresistances at low temperature. All methods converge to give a disorder amplitude of $(20 pm 10)$ meV. Because of this relatively low disorder, close to the CNP, at low temperature, the sample resistivity does not exhibit the standard value $simeq h/4e^2$ but diverges. Moreover, the magnetoresistance curves have a unique ambipolar behavior, which has been systematically observed for all studied samples. This is a signature of both asymmetry in the density of states and in-plane charge transfer. The microscopic origin of this behavior cannot be unambiguously determined. However, we propose a model in which the SiC substrate steps qualitatively explain the ambipolar behavior.
Graphene grown epitaxially on SiC, close to the charge neutrality point (CNP), in an orthogonal magnetic field shows an ambipolar behavior of the transverse resistance accompanied by a puzzling longitudinal magnetoresistance. When injecting a transve
We study an epitaxial graphene monolayer with bilayer inclusions via magnetotransport measurements and scanning gate microscopy at low temperatures. We find that bilayer inclusions can be metallic or insulating depending on the initial and gated carr
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua
The magnetic field-dependent longitudinal and Hall components of the resistivity rho_xx(H) and rho_xy(H) are measured in graphene on silicon dioxide substrates at temperatures from 1.6 K to room temperature. At charge densities near the charge-neutra
The transport properties of epitaxial graphene on SiC(0001) at quantizing magnetic fields are investigated. Devices patterned perpendicularly to SiC terraces clearly exhibit bilayer inclusions distributed along the substrate step edges. We show that