ﻻ يوجد ملخص باللغة العربية
After the discovery of the gravitational waves and the observation of neutrinos of cosmic origin, we have entered a new and exciting era where cosmic rays, neutrinos, photons and gravitational waves will be used simultaneously to study the highest energy phenomena in the Universe. Here we present a fully Bayesian approach to the challenge of combining and comparing the wealth of measurements from existing and upcoming experimental facilities. We discuss the procedure from a theoretical point of view and using simulations, we also demonstrate the feasibility of the method by incorporating the use of information provided by different theoretical models and different experimental measurements.
At the time of defining the science objectives of the INTernational Gamma-Ray Astrophysics Laboratory (INTEGRAL), such a rapid and spectacular development of multi-messenger astronomy could not have been predicted, with new impulsive phenomena becomi
Common analysis techniques in multi-messenger astronomy involve hypothesis tests with unbinned log-likelihood (LLH) functions using data recorded in celestial coordinates to identify sources of high-energy cosmic particles in the Universe. We present
The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extr
We present a first step in developing a benchmark equation-of-state (EoS) model for multi-messenger astronomy that unifies the thermodynamics of quark and hadronic degrees of freedom. A Lagrangian approach to the thermodynamic potential of quark-meso
The ANTARES Collaboration has completed in 2008 the deployment of what is currently the largest high energy neutrino detector in the Northern hemisphere. The search for cosmic neutrinos in the energy range between tens of GeV and tens of PeV is perfo