ﻻ يوجد ملخص باللغة العربية
Employing a recently proposed metamodeling for the nucleonic matter equation of state we analyze neutron star global properties such as masses, radii, momentum of inertia, and others. The impact of the uncertainty on empirical parameters on these global properties is analyzed in a Bayesian statistical approach. Physical constraints, such as causality and stability, are imposed on the equation of state and different hypotheses for the direct Urca (dUrca) process are investigated. In addition, only metamodels with maximum masses above 2$M_odot$ are selected. Our main results are the following: the equation of state exhibits a universal behavior against the dUrca hypothesis under the condition of charge neutrality and $beta$-equilibrium; neutron stars, if composed exclusively of nucleons and leptons, have a radius of 12.7$pm$0.4~km for masses ranging from 1 up to 2$M_odot$; a small radius lower than 11~km is very marginally compatible with our present knowledge of the nuclear empirical parameters; and finally, the most important empirical parameters which are still affected by large uncertainties and play an important role in determining the radius of neutrons stars are the slope and curvature of the symmetry energy ($L_{sym}$ and $K_{sym}$) and, to a lower extent, the skewness parameters ($Q_{sat/sym}$).
The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within th
{it Background.} We investigate possible correlations between neutron star observables and properties of atomic nuclei. Particularly, we explore how the tidal deformability of a 1.4 solar mass neutron star, $M_{1.4}$, and the neutron skin thickness o
Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat
Neutron star observations, including direct mass and radius measurements as well as the analysis of gravitational wave signals emitted by stellar mergers, provide valuable and unique insights into the properties of strongly interacting matter at high
We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid criti