ﻻ يوجد ملخص باللغة العربية
The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner-Hartree-Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu--Jona-Lasinio (NJL) and the Color Dielectric (CD) models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.
{it Background.} We investigate possible correlations between neutron star observables and properties of atomic nuclei. Particularly, we explore how the tidal deformability of a 1.4 solar mass neutron star, $M_{1.4}$, and the neutron skin thickness o
We review the current status and recent progress of microscopic many-body approaches and phenomenological models, which are employed to construct the equation of state of neutron stars. The equation of state is relevant for the description of their s
Employing a recently proposed metamodeling for the nucleonic matter equation of state we analyze neutron star global properties such as masses, radii, momentum of inertia, and others. The impact of the uncertainty on empirical parameters on these glo
Constraints set on key parameters of the nuclear matter equation of state (EoS) by the values of the tidal deformability, inferred from GW170817, are examined by using a diverse set of relativistic and non-relativistic mean field models. These models
Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat