ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetically Trapped Liquid-State Conformers of a Sodiated Model Peptide Observed in the Gas Phase

62   0   0.0 ( 0 )
 نشر من قبل Carsten Baldauf
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the peptide AcPheAla5LysH+, a model system for studying helix formation in the gas phase, in order to fully understand the forces that stabilize the helical structure. In particular, we address the question of whether the local fixation of the positive charge at the peptides C-terminus is a prerequisite for forming helices by replacing the protonated C-terminal Lys residue by Ala and a sodium cation. The combination of gas-phase vibrational spectroscopy of cryogenically cooled ions with molecular simulations based on density-functional theory (DFT) allows for detailed structure elucidation. For sodiated AcPheAla6, we find globular rather than helical structures, as the mobile positive charge strongly interacts with the peptide backbone and disrupts secondary structure formation. Interestingly, the global minimum structure from simulation is not present in the experiment. We interpret that this is due to high barriers involved in re-arranging the peptide-cation interaction that ultimately result in kinetically trapped structures being observed in the experiment.



قيم البحث

اقرأ أيضاً

In processes when particles such as nanodroplets, clusters, or molecules move through a dilute background gas and undergo capture collisions, it is often important to know how much translational kinetic energy is deposited into the particles by these pick-up events. For sticking collisions with a Maxwell-Boltzmann gas, an exact expression is derived which is valid for arbitrary relative magnitudes of the particle and thermal gas speeds.
We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($l ambdaapprox130 text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities.
Inter-Coulombic decay (ICD) resonances in the photoionization of Cl@C60 endofullerene molecule are calculated using a perturbative density functional theory (DFT) method. This is the first ICD study of an open shell atom in a fullerene cage. Three cl asses of resonances are probed: (i) Cl inner vacancies decaying through C60 outer continua, (ii) C60 inner vacancies decaying through Cl outer continua, and (iii) inner vacancies of either system decaying through the continua of Cl-C60 hybrid levels, the hybrid Auger-ICD resonances. Comparisons with Ar@C60 results reveal that the properties of hybrid Auger-ICD resonances are affected by the extent of level hybridization.
Based on a combined quantum-classical treatment, a complete study of the strong field dynamics of H2+, i.e. including all nuclear and electronic DOF as well as dissociation and ionization, is presented. We find that the ro-vibrational nuclear dynamic s enhances dissociation and, at the same time, suppresses ionization, confirming experimental observations by I. Ben-Itzhak et al. [Phys. Rev. Lett. 95, 073002 (2005)]. In addition and counter-intuitively, it is shown that for large initial vibrational excitation ionization takes place favorably at large angles between the laser polarization and molecular axis. A local ionization model delivers a transparent explanation of these findings.
We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smalles t entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules and yet the the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pair-wise full-correlation single-particle potential for the Ps-He interaction and the total potential in solids is obtained as a superposition of the pair-wise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyse experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyse ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا