ﻻ يوجد ملخص باللغة العربية
Light, MeV-scale dark matter (DM) is an exciting DM candidate that is undetectable by current experiments. A germanium (Ge) detector utilizing internal charge amplification for the charge carriers created by the ionization of impurities is a promising new technology with experimental sensitivity for detecting MeV-scale DM. We analyze the physics mechanisms of the signal formation, charge creation, charge internal amplification, and the projected sensitivity for directly detecting MeV-scale DM particles. We present a design for a novel Ge detector at helium temperature ($sim$4 K) enabling ionization of impurities from DM impacts. With large localized E-fields, the ionized excitations can be accelerated to kinetic energies larger than the Ge bandgap at which point they can create additional electron-hole pairs, producing intrinsic amplification to achieve an ultra-low energy threshold of $sim$0.1 eV for detecting low-mass DM particles in the MeV scale. Correspondingly, such a Ge detector with 1 kg-year exposure will have high sensitivity to a DM-nucleon cross section of $sim$5$times$10$^{-45}$ cm$^{2}$ at a DM mass of $sim$10 MeV/c$^{2}$ and a DM-electron cross section of $sim$5$times$10$^{-46}$cm$^{2}$ at a DM mass of $sim$1 MeV/c$^2$.
This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two comm
Germanium (Ge) detectors with ability of measuring a single electron-hole (e-h) pair are needed in searching for light dark matter (LDM) down to the MeV scale. We investigate the feasibility of Ge detectors with amorphous-Ge (a-Ge) contacts to achiev
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has imp
The next generation of large scale WIMP direct detection experiments have the potential to go beyond the discovery phase and reveal detailed information about both the particle physics and astrophysics of dark matter. We report here on early results
A promising technology concept for sub-GeV dark matter detection is described, in which low-temperature microcalorimeters serve as the sensors and superfluid $^4$He serves as the target material. A superfluid helium target has several advantageous pr