ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Network-based Graph Embedding for Cross-Platform Binary Code Similarity Detection

129   0   0.0 ( 0 )
 نشر من قبل Xiaojun Xu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of cross-platform binary code similarity detection aims at detecting whether two binary functions coming from different platforms are similar or not. It has many security applications, including plagiarism detection, malware detection, vulnerability search, etc. Existing approaches rely on approximate graph matching algorithms, which are inevitably slow and sometimes inaccurate, and hard to adapt to a new task. To address these issues, in this work, we propose a novel neural network-based approach to compute the embedding, i.e., a numeric vector, based on the control flow graph of each binary function, then the similarity detection can be done efficiently by measuring the distance between the embeddings for two functions. We implement a prototype called Gemini. Our extensive evaluation shows that Gemini outperforms the state-of-the-art approaches by large margins with respect to similarity detection accuracy. Further, Gemini can speed up prior arts embedding generation time by 3 to 4 orders of magnitude and reduce the required training time from more than 1 week down to 30 minutes to 10 hours. Our real world case studies demonstrate that Gemini can identify significantly more vulnerable firmware images than the state-of-the-art, i.e., Genius. Our research showcases a successful application of deep learning on computer security problems.

قيم البحث

اقرأ أيضاً

Binary code similarity detection is a fundamental technique for many security applications such as vulnerability search, patch analysis, and malware detection. There is an increasing need to detect similar code for vulnerability search across archite ctures with the increase of critical vulnerabilities in IoT devices. The variety of IoT hardware architectures and software platforms requires to capture semantic equivalence of code fragments in the similarity detection. However, existing approaches are insufficient in capturing the semantic similarity. We notice that the abstract syntax tree (AST) of a function contains rich semantic information. Inspired by successful applications of natural language processing technologies in sentence semantic understanding, we propose a deep learning-based AST-encoding method, named ASTERIA, to measure the semantic equivalence of functions in different platforms. Our method leverages the Tree-LSTM network to learn the semantic representation of a function from its AST. Then the similarity detection can be conducted efficiently and accurately by measuring the similarity between two representation vectors. We have implemented an open-source prototype of ASTERIA. The Tree-LSTM model is trained on a dataset with 1,022,616 function pairs and evaluated on a dataset with 95,078 function pairs. Evaluation results show that our method outperforms the AST-based tool Diaphora and the-state-of-art method Gemini by large margins with respect to the binary similarity detection. And our method is several orders of magnitude faster than Diaphora and Gemini for the similarity calculation. In the application of vulnerability search, our tool successfully identified 75 vulnerable functions in 5,979 IoT firmware images.
256 - Chen Zeng , Yue Yu , Shanshan Li 2021
With the rapid increase in the amount of public code repositories, developers maintain a great desire to retrieve precise code snippets by using natural language. Despite existing deep learning based approaches(e.g., DeepCS and MMAN) have provided th e end-to-end solutions (i.e., accepts natural language as queries and shows related code fragments retrieved directly from code corpus), the accuracy of code search in the large-scale repositories is still limited by the code representation (e.g., AST) and modeling (e.g., directly fusing the features in the attention stage). In this paper, we propose a novel learnable deep Graph for Code Search (calleddeGraphCS), to transfer source code into variable-based flow graphs based on the intermediate representation technique, which can model code semantics more precisely compared to process the code as text directly or use the syntactic tree representation. Furthermore, we propose a well-designed graph optimization mechanism to refine the code representation, and apply an improved gated graph neural network to model variable-based flow graphs. To evaluate the effectiveness of deGraphCS, we collect a large-scale dataset from GitHub containing 41,152 code snippets written in C language, and reproduce several typical deep code search methods for comparison. Besides, we design a qualitative user study to verify the practical value of our approach. The experimental results have shown that deGraphCS can achieve state-of-the-art performances, and accurately retrieve code snippets satisfying the needs of the users.
Given a closed-source program, such as most of proprietary software and viruses, binary code analysis is indispensable for many tasks, such as code plagiarism detection and malware analysis. Today, source code is very often compiled for various archi tectures, making cross-architecture binary code analysis increasingly important. A binary, after being disassembled, is expressed in an assembly languages. Thus, recent work starts exploring Natural Language Processing (NLP) inspired binary code analysis. In NLP, words are usually represented in high-dimensional vectors (i.e., embeddings) to facilitate further processing, which is one of the most common and critical steps in many NLP tasks. We regard instructions as words in NLP-inspired binary code analysis, and aim to represent instructions as embeddings as well. To facilitate cross-architecture binary code analysis, our goal is that similar instructions, regardless of their architectures, have embeddings close to each other. To this end, we propose a joint learning approach to generating instruction embeddings that capture not only the semantics of instructions within an architecture, but also their semantic relationships across architectures. To the best of our knowledge, this is the first work on building cross-architecture instruction embedding model. As a showcase, we apply the model to resolving one of the most fundamental problems for binary code similarity comparison---semantics-based basic block comparison, and the solution outperforms the code statistics based approach. It demonstrates that it is promising to apply the model to other cross-architecture binary code analysis tasks.
Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate downstream applications, such as finding the most similar chemical compounds similar to a query compound or Fewshot 3D Action Recognition. Recent ly, some graph similarity computation models based on neural networks have been proposed, which are either based on graph-level interaction or node-level comparison. However, when the number of nodes in the graph increases, it will inevitably bring about reduced representation ability or high computation cost. Motivated by this observation, we propose a graph partitioning and graph neural network-based model, called PSimGNN, to effectively resolve this issue. Specifically, each of the input graphs is partitioned into a set of subgraphs to extract the local structural features directly. Next, a novel graph neural network with an attention mechanism is designed to map each subgraph into an embedding vector. Some of these subgraph pairs are automatically selected for node-level comparison to supplement the subgraph-level embedding with fine-grained information. Finally, coarse-grained interaction information among subgraphs and fine-grained comparison information among nodes in different subgraphs are integrated to predict the final similarity score. Experimental results on graph datasets with different graph sizes demonstrate that PSimGNN outperforms state-of-the-art methods in graph similarity computation tasks using approximate Graph Edit Distance (GED) as the graph similarity metric.
The problem of code generation from textual program descriptions has long been viewed as a grand challenge in software engineering. In recent years, many deep learning based approaches have been proposed, which can generate a sequence of code from a sequence of textual program description. However, the existing approaches ignore the global relationships among API methods, which are important for understanding the usage of APIs. In this paper, we propose to model the dependencies among API methods as an API dependency graph (ADG) and incorporate the graph embedding into a sequence-to-sequence (Seq2Seq) model. In addition to the existing encoder-decoder structure, a new module named ``embedder is introduced. In this way, the decoder can utilize both global structural dependencies and textual program description to predict the target code. We conduct extensive code generation experiments on three public datasets and in two programming languages (Python and Java). Our proposed approach, called ADG-Seq2Seq, yields significant improvements over existing state-of-the-art methods and maintains its performance as the length of the target code increases. Extensive ablation tests show that the proposed ADG embedding is effective and outperforms the baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا