ﻻ يوجد ملخص باللغة العربية
The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite type cerium scandate have been studied in situ under high pressure by means of synchrotron x-ray powder diffraction, using a diamond anvil cell. We have found that the perovskite type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure has indicated an anisotropic compression. The room-temperature pressure-volume equation of state is obtained from the experiments. From the evolution of microscopic structural parameters like bond distances and coordination polyhedra of cerium and scandium, the macroscopic behavior of CeScO3 under compression has been explained and reasoned for its large pressure stability. The reported results are discussed in comparison with high-pressure results from other perovskites.
Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectra (XPS) of Nd doped phosphate glasses have been studied before and after gamma irradiation in order to find the behavior of chemical bonds, which decide the structural changes in
We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the
We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature a
By means of in situ synchrotron X-ray diffraction and Raman spectroscopy under hydrostatic pressure, we investigate the stability of the quadruple perovskite LaMn7O12. At 34 GPa, the data unveil a first-order structural phase transition from the mono
In order to control and tailor the properties of nanodots, it is essential to separate the effects of quantum confinement from those due to the surface, and to gain insight into the influence of preparation conditions on the dot physical properties.