ترغب بنشر مسار تعليمي؟ اضغط هنا

Anhamonic finite temperature effects on the Raman and Infrared spectra to determine the crystal structure phase III of solid molecular hydrogen

69   0   0.0 ( 0 )
 نشر من قبل Thomas K\\\"uhne
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature are particularly important and qualitatively influences the main conclusions. While P6$_3$/m is the most likely candidate for phase III at the nuclear ground state, at finite temperature the C2/c structure appears to be more suitable.

قيم البحث

اقرأ أيضاً

110 - Sam Azadi , Thomas D. Kuhne 2011
Being the simplest element with just one electron and proton the electronic structure of the Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure. Back in 1935 Wigner and Huntington predicted that at very high pressure solid molecular hydrogen would dissociate and form an atomic solid that is metallic. In spite of intense research efforts the experimental realization, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P6$_3$/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.
We have studied solid hydrogen under pressure at low temperatures. With increasing pressure we observe changes in the sample, going from transparent, to black, to a reflective metal, the latter studied at a pressure of 495 GPa. We have measured the r eflectance as a function of wavelength in the visible spectrum finding values as high as 0.90 from the metallic hydrogen. We have fit the reflectance using a Drude free electron model to determine the plasma frequency of 30.1 eV at T= 5.5 K, with a corresponding electron carrier density of 6.7x1023 particles/cm3, consistent with theoretical estimates. The properties are those of a metal. Solid metallic hydrogen has been produced in the laboratory.
There has been a major controversy over the past seven years about the high-pressure melting curves of transition metals. Static compression (diamond-anvil cell: DAC) experiments up to the Mbar region give very low melting slopes dT_m/dP, but shock-w ave (SW) data reveal transitions indicating much larger dT_m/dP values. Ab initio calculations support the correctness of the shock data. In a very recent letter, Belonoshko et al. propose a simple and elegant resolution of this conflict for molybdenum. Using ab initio calculations based on density functional theory (DFT), they show that the high-P/high-T phase diagram of Mo must be more complex than was hitherto thought. Their calculations give convincing evidence that there is a transition boundary between the normal bcc structure of Mo and a high-T phase, which they suggest could be fcc. They propose that this transition was misinterpreted as melting in DAC experiments. In confirmation, they note that their boundary also explains a transition seen in the SW data. We regard Belonoshko et al.s Letter as extremely important, but we note that it raises some puzzling questions, and we believe that their proposed phase diagram cannot be completely correct. We have calculated the Helmholtz and Gibbs free energies of the bcc, fcc and hcp phases of Mo, using essentially the same quasiharmonic methods as used by Belonoshko et al.; we find that at high-P and T Mo in the hcp structure is more stable than in bcc or fcc.
98 - Sam Azadi , N. D. Drummond , 2016
We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GP a are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body band gaps at the same density is found to be almost independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear quantum effects in the electronic structure of solid hydrogen. Our DMC results suggest that the metallization of high-pressure solid hydrogen occurs via a structural phase transition rather than band gap closure.
132 - Sam Azadi , Ranber Singh , 2017
We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the $C2/c$, $Pc$, and $P6_3/m$ structures at pressures of 250, 300, and 350 GPa are cal culated using the diffusion quantum Monte Carlo (DMC) method. The atomic configurations are obtained from ab-initio path-integral molecular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point energy and temperature-induced motion of the protons including anharmonic effects. We find that finite temperature and nuclear quantum effects reduce the band-gaps substantially, leading to metallization of the $C2/c$ and $Pc$ phases via band overlap; the effect on the band-gap of the $P6_3/m$ structure is less pronounced. Our combined DMC-PIMD simulations predict that there are no excitonic or quasiparticle energy gaps for the $C2/c$ and $Pc$ phases at 300 GPa and 300 K. Our results also indicate a strong correlation between the band-gap energy and vibron modes. This strong coupling induces a band-gap reduction of more than 2.46 eV in high-pressure solid molecular hydrogen. Comparing our DMC-PIMD with experimental results available, we conclude that none of the structures proposed is a good candidate for phases III and IV of solid hydrogen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا