ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the upgraded H.E.S.S. cameras

93   0   0.0 ( 0 )
 نشر من قبل Simon Bonnefoy
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 14 years old cameras of the H.E.S.S. 12-m telescopes have been upgraded in 2015/2016, with the goals of reducing the system failure rate, reducing the dead time and improving the overall performance of the array. This conference contribution describes the various tests that were carried out on the cameras and their sub-components both in the lab and on site. It also gives an overview of the commissioning and calibration procedures adopted during and after the installation, including e.g. flat-fielding and trigger threshold scans. Finally, it reports in detail about the overall performance of the four new H.E.S.S. I cameras, using very recent data.

قيم البحث

اقرأ أيضاً

In 2015/16, the photomultiplier cameras of the H.E.S.S. Cherenkov telescopes CT1-4 have undergone a major upgrade. The entire electronics has been replaced, using NECTAr chips for the front-end readout. A new ventilation system has been installed and several auxiliary components have been replaced. Besides this, the internal control and readout software was rewritten from scratch in a modern and modular way. Ethernet technology was used wherever possible to ensure both flexibility, stability and high bandwidth. An overview of the installed components will be given.
The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes located in the Khomas Highland of Namibia. H.E.S.S. observes gamma rays above tens of GeV by detecting the Cherenkov light that is produced wh en Very High Energy gamma rays interact with the Earths atmosphere. The H.E.S.S. Data Acquisition System (DAQ) coordinates the nightly telescope operations, ensuring that the various components communicate properly and behave as intended. It also provides the interface between the telescopes and the people on shift who guide the operations. The DAQ comprises both the hardware and software, and since the beginning of H.E.S.S., both elements have been continuously adapted to improve the data-taking capabilities of the array and push the limits of what H.E.S.S. is capable of. Most recently, this includes the upgrade of the entire computing cluster hosting the DAQ software, and the accommodation of a new camera on the large 28m H.E.S.S. telescope. We discuss the performance of the upgraded DAQ and the lessons learned from these activities.
The High Energy Stereoscopic System (H.E.S.S.) is one of the three arrays of imaging atmospheric Cherenkov telescopes (IACTs) currently in operation. It is composed of four 12-meter telescopes and a 28-meter one, and is sensitive to gamma rays in the energy range ~30 GeV - 100 TeV. The cameras of the 12-m telescopes recently underwent a substantial upgrade, with the goal of improving their performance and robustness. The upgrade involved replacing all camera components except for the photomultiplier tubes (PMTs). This meant developing new hardware for the trigger, readout, power, cooling and mechanical systems, and new software for camera control and data acquisition. Several novel technologies were employed in the cameras: the readout is built around the new NECTAr digitizer chip, developed for the next generation of IACTs; the camera electronics is fully controlled and read out via Ethernet using a combination of FPGA and embedded ARM computers; the software uses modern libraries such as Apache Thrift, ZMQ and Protocol buffers. This work describes in detail the design and the performance of the upgraded cameras.
The H.E.S.S. observatory was recently extended with a fifth telescope located at the center of the array - H.E.S.S. II. With a reflector roughly six times the area of the smaller telescopes and four times more pixels per sky area, this new telescope can resolve images of particle showers in the atmosphere in unprecedented detail and explore the gamma-ray sky in the poorly studied regime around a few tens of Giga electron-volt. H.E.S.S. II has been equipped with a high-performance drive system that can deliver the high torque necessary to accelerate and slew the 600 tonnes telescope while keeping a good tracking accuracy. A modular design with a high degree of redundancy has been employed to achieve stability of operation and to ensure that the telescope can be moved to a safe position within a short period of time. Each axis is driven by four 28 kW servo motors which are pair-wise torque-biased and synchronized through a state of the art Programmable Logic Controller (PLC). With this system, a fast repositioning and a minimal settling time has been achieved - crucial when studying transient sources such as gamma-ray bursts which are a prime target for this telescope. This contribution will report on the successful commissioning of the H.E.S.S. II drive system in the first half of 2012 at the H.E.S.S. site in Namibia. The technical implementation and the performance of the drive system will be presented.
In October 2019, the central 28 m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the Medium-Sized Telescopes of the Cherenkov Telescope Array (CTA), with emphasis on cost and performance optimization and on reliability. The fully digital design of the trigger and readout system makes it possible to operate the camera at high event rates and to precisely adjust and understand the trigger system. The novel design of the front-end electronics achieves a dynamic range of over 3,000 photoelectrons with only one electronics readout circuit per pixel. Here we report on the performance parameters of the camera obtained during the first year of operation in the field, including operational stability and optimization of calibration algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا