ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the New FlashCam-based Camera in the 28,m Telescope of H.E.S.S

130   0   0.0 ( 0 )
 نشر من قبل Baiyang Bi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In October 2019, the central 28 m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the Medium-Sized Telescopes of the Cherenkov Telescope Array (CTA), with emphasis on cost and performance optimization and on reliability. The fully digital design of the trigger and readout system makes it possible to operate the camera at high event rates and to precisely adjust and understand the trigger system. The novel design of the front-end electronics achieves a dynamic range of over 3,000 photoelectrons with only one electronics readout circuit per pixel. Here we report on the performance parameters of the camera obtained during the first year of operation in the field, including operational stability and optimization of calibration algorithms.



قيم البحث

اقرأ أيضاً

In October 2019 the central 28m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes o f the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations.
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of tel escopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
128 - S. Sailer , F. Werner , G. Hermann 2019
FlashCam is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We compare camera trigger rates obtained from measurements with the camera prototype in the laboratory and Monte-Carlo simulations, when scanning th e parameter space of the fully-digital trigger logic and the intensity of a continuous light source mimicking the night sky background (NSB) during on-site operation. The comparisons of the measured data results to the Monte-Carlo simulations are used to verify the FlashCam trigger logic and the expected trigger performance.
156 - G. Puhlhofer 2013
FlashCam is a Cherenkov camera development project centered around a fully digital trigger and readout scheme with smart, digital signal processing, and a horizontal architecture for the electromechanical implementation. The fully digital approach, b ased on commercial FADCs and FPGAs as key components, provides the option to easily implement different types of triggers as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. At the same time, a large dynamic range and high resolution of low-amplitude signals in a single readout channel per pixel is achieved using compression of high amplitude signals in the preamplifier and signal processing in the FPGA. The readout of the front-end modules into a camera server is Ethernet-based using standard Ethernet switches. In its current implementation, data transfer and backend processing rates of ~3.8 GBytes/sec have been achieved. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several tens of kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, which is interfaced through analogue signal transmission to the digital readout system. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. This paper describes the FlashCam concept, its verification process, and its implementation for a 12 m class CTA telescope with PMT-based PDP.
The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with Kinetic Inductance Detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30 m telescope at Pico Vel eta with an estimated resolution of 13,arcsec and 18 arcsec, respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common-user facility in early 2014. NIKA is a test bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications significantly improve the overall linearity, sensitivity, and absolute calibration performance of NIKA. This is proved on observations of point-like sources for which we obtain a best sensitivity (averaged over all valid detectors) of 40 and 14 mJy.s$^{1/2}$ for optimal weather conditions for the 1.25 and 2.14 mm arrays, respectively. NIKA observations of well known extended sources (DR21 complex and the Horsehead nebula) are presented. This performance makes the NIKA camera a competitive astrophysical instrument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا