ﻻ يوجد ملخص باللغة العربية
We introduce a new bivariate polynomial ${displaystyle J(G; x,y):=sumlimits_{W in V(G)} x^{|W|}y^{|N(W)|}}$ which contains the standard domination polynomial of the graph $G$ in two different ways. We build methods for efficient calculation of this polynomial and prove that there are still some families of graphs which have the same bivariate polynomial.
The domination polynomial D(G,x) of a graph G is the generating function of its dominating sets. We prove that D(G,x) satisfies a wide range of reduction formulas. We show linear recurrence relations for D(G,x) for arbitrary graphs and for various sp
The well-known notion of domination in a graph abstracts the idea of protecting locations with guards. This paper introduces a new graph invariant, the autonomous domination number, which abstracts the idea of defending a collection of locations with
We consider the problem of secure distributed matrix multiplication. Coded computation has been shown to be an effective solution in distributed matrix multiplication, both providing privacy against workers and boosting the computation speed by effic
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr
In combinatorics, a latin square is a $ntimes n$ matrix filled with n different symbols, each occurring exactly once in each row and exactly once in each column. Associated to each latin square, we can define a simple graph called a latin square grap