ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of $ u_{mu}$ charged-current single $pi^{0}$ production on hydrocarbon in the few-GeV region using MINERvA

202   0   0.0 ( 0 )
 نشر من قبل William Mann A
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The semi-exclusive channel $ u_{mu}+textrm{CH}rightarrowmu^{-}pi^{0}+textrm{nucleon(s)}$ is analyzed using MINERvA exposed to the low-energy NuMI $ u_{mu}$ beam with spectral peak at $E_{ u} simeq 3$ GeV. Differential cross sections for muon momentum and production angle, $pi^{0}$ kinetic energy and production angle, and for squared four-momentum transfer are reported, and the cross section $sigma(E_{ u})$ is obtained over the range 1.5 GeV $leq E_{ u} <$ 20 GeV. Results are compared to GENIE and NuWro predictions and to published MINERvA cross sections for $ u_{mu}textrm{-CC}(pi^{+})$ and $bar{ u}_{mu}textrm{-CC}(pi^{0})$. Disagreements between data and simulation are observed at very low and relatively high values for muon angle and for $Q^2$ that may reflect shortfalls in modeling of interactions on carbon. For $pi^{0}$ kinematic distributions however, the data are consistent with the simulation and provide support for generator treatments of pion intranuclear scattering. Using signal-event subsamples that have reconstructed protons as well as $pi^{0}$ mesons, the $ppi^{0}$ invariant mass distribution is obtained, and the decay polar and azimuthal angle distributions in the rest frame of the $ppi^{0}$ system are measured in the region of $Delta(1232)^+$ production, $W < 1.4$ GeV.

قيم البحث

اقرأ أيضاً

103 - T. Le , F. Akbar , L. Aliaga 2019
The antineutrino scattering channel $bar{ u}_{mu} ,text{CH} rightarrow mu^{+} ,pi^{-} ,X$(nucleon(s)) is analyzed in the incident energy range 1.5 to 10 GeV using the MINERvA detector at Fermilab. Differential cross sections are reported as functions of $mu^{+}$ momentum and production angle, $pi^{-}$ kinetic energy and production angle, and antineutrino energy and squared four-momentum transfer. Distribution shapes are generally reproduced by simulations based on the GENIE, NuWro, and GiBUU event generators, however GENIE (GiBUU) overestimates (underestimates) the cross-section normalizations by 8% (10%). Comparisons of data with the GENIE-based reference simulation probe conventional treatments of cross sections and pion intranuclear rescattering. The distribution of non-track vertex energy is used to decompose the signal sample into reaction categories, and cross sections are determined for the exclusive reactions $mu^{+} pi^{-} n$ and $ mu^+ pi^{-} p$. A similar treatment applied to the published MINERvA sample $bar{ u}_{mu} ,text{CH} rightarrow mu^{+} ,pi^{0} ,X$(nucleon(s)) has determined the $mu^{+} pi^{0} n$ cross section, and the latter is used with $sigma(pi^{-} n)$ and $sigma(pi^{-} p)$ to carry out an isospin decomposition of $bar{ u}_{mu}$-induced CC($pi$). The ratio of magnitudes and relative phase for isospin amplitudes $A_{3}$ and $A_{1}$ thereby obtained are: $R^{bar{ u}} = 0.99 pm 0.19$ and $phi^{bar{ u}} = 93^{circ} pm 7^{circ}$. Our results are in agreement with bubble chamber measurements made four decades ago.
We report the first measurement of the flux-integrated cross section of $ u_{mu}$ charged-current single $pi^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection cham ber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling assumptions used in models of the production and transport of pions in neutrino-nucleus scattering. The techniques used are an important demonstration of the successful reconstruction and analysis of neutrino interactions producing electromagnetic final states using a liquid argon time projection chamber operating at the earths surface.
Production of K^{+} mesons in charged-current u_{mu} interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events co ntaining a stopping K^{+} which decays at rest. The differential cross section in K^{+} kinetic energy, dsigma/dT_{K}, is observed to be relatively flat between 0 and 500 MeV. Its shape is in good agreement with the prediction by the textsc{genie} neutrino event generator when final-state interactions are included, however the data rate is lower than the prediction by 15%.
68 - C.L. McGivern , T. Le , B. Eberly 2016
Separate samples of charged-current pion production events representing two semi-inclusive channels $ u_mu$-CC($pi^{+}$) and $bar{ u}_{mu}$-CC($pi^{0}$) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributio ns in kinematic variables based upon $mu^{pm}$-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer $Q^2$, are reported, and cross sections versus neutrino energy are obtained. Comparisons with predictions of current neutrino event generators are used to clarify the role of the $Delta(1232)$ and higher-mass baryon resonances in CC pion production and to show the importance of pion final-state interactions. For the $ u_mu$-CC($pi^{+}$) ($bar{ u}_{mu}$-CC($pi^{0}$)) sample, the absolute data rate is observed to lie below (above) the predictions of some of the event generators by amounts that are typically 1-to-2 $sigma$. However the generators are able to reproduce the shapes of the differential cross sections for all kinematic variables of either data set.
The ArgoNeuT collaboration reports the first measurement of neutral current $pi^{0}$ production in $ u_{mu}$-argon and $bar{ u}_{mu}$-argon scattering. This measurement was performed using the ArgoNeuT liquid argon time projection chamber deployed at Fermilabs NuMI neutrino beam with an exposure corresponding to 1.2$times 10^{20}$ protons-on-target from the Fermilab Main Injector and a mean energy for $ u_{mu}$ of 9.6~GeV and for $bar{ u}_{mu}$ of 3.6~GeV. We compare the measured cross section and kinematic distributions to predictions from the GENIE and NuWro neutrino interaction event generators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا