ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA

69   0   0.0 ( 0 )
 نشر من قبل Laura Fields
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Separate samples of charged-current pion production events representing two semi-inclusive channels $ u_mu$-CC($pi^{+}$) and $bar{ u}_{mu}$-CC($pi^{0}$) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon $mu^{pm}$-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer $Q^2$, are reported, and cross sections versus neutrino energy are obtained. Comparisons with predictions of current neutrino event generators are used to clarify the role of the $Delta(1232)$ and higher-mass baryon resonances in CC pion production and to show the importance of pion final-state interactions. For the $ u_mu$-CC($pi^{+}$) ($bar{ u}_{mu}$-CC($pi^{0}$)) sample, the absolute data rate is observed to lie below (above) the predictions of some of the event generators by amounts that are typically 1-to-2 $sigma$. However the generators are able to reproduce the shapes of the differential cross sections for all kinematic variables of either data set.

قيم البحث

اقرأ أيضاً

103 - T. Le , F. Akbar , L. Aliaga 2019
The antineutrino scattering channel $bar{ u}_{mu} ,text{CH} rightarrow mu^{+} ,pi^{-} ,X$(nucleon(s)) is analyzed in the incident energy range 1.5 to 10 GeV using the MINERvA detector at Fermilab. Differential cross sections are reported as functions of $mu^{+}$ momentum and production angle, $pi^{-}$ kinetic energy and production angle, and antineutrino energy and squared four-momentum transfer. Distribution shapes are generally reproduced by simulations based on the GENIE, NuWro, and GiBUU event generators, however GENIE (GiBUU) overestimates (underestimates) the cross-section normalizations by 8% (10%). Comparisons of data with the GENIE-based reference simulation probe conventional treatments of cross sections and pion intranuclear rescattering. The distribution of non-track vertex energy is used to decompose the signal sample into reaction categories, and cross sections are determined for the exclusive reactions $mu^{+} pi^{-} n$ and $ mu^+ pi^{-} p$. A similar treatment applied to the published MINERvA sample $bar{ u}_{mu} ,text{CH} rightarrow mu^{+} ,pi^{0} ,X$(nucleon(s)) has determined the $mu^{+} pi^{0} n$ cross section, and the latter is used with $sigma(pi^{-} n)$ and $sigma(pi^{-} p)$ to carry out an isospin decomposition of $bar{ u}_{mu}$-induced CC($pi$). The ratio of magnitudes and relative phase for isospin amplitudes $A_{3}$ and $A_{1}$ thereby obtained are: $R^{bar{ u}} = 0.99 pm 0.19$ and $phi^{bar{ u}} = 93^{circ} pm 7^{circ}$. Our results are in agreement with bubble chamber measurements made four decades ago.
201 - O. Altinok , T. Le , L. Aliaga 2017
The semi-exclusive channel $ u_{mu}+textrm{CH}rightarrowmu^{-}pi^{0}+textrm{nucleon(s)}$ is analyzed using MINERvA exposed to the low-energy NuMI $ u_{mu}$ beam with spectral peak at $E_{ u} simeq 3$ GeV. Differential cross sections for muon momentum and production angle, $pi^{0}$ kinetic energy and production angle, and for squared four-momentum transfer are reported, and the cross section $sigma(E_{ u})$ is obtained over the range 1.5 GeV $leq E_{ u} <$ 20 GeV. Results are compared to GENIE and NuWro predictions and to published MINERvA cross sections for $ u_{mu}textrm{-CC}(pi^{+})$ and $bar{ u}_{mu}textrm{-CC}(pi^{0})$. Disagreements between data and simulation are observed at very low and relatively high values for muon angle and for $Q^2$ that may reflect shortfalls in modeling of interactions on carbon. For $pi^{0}$ kinematic distributions however, the data are consistent with the simulation and provide support for generator treatments of pion intranuclear scattering. Using signal-event subsamples that have reconstructed protons as well as $pi^{0}$ mesons, the $ppi^{0}$ invariant mass distribution is obtained, and the decay polar and azimuthal angle distributions in the rest frame of the $ppi^{0}$ system are measured in the region of $Delta(1232)^+$ production, $W < 1.4$ GeV.
The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($ u$) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-$ u$ flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.
The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections-among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil. Recently a stud y of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.
Using a high-statistics, high-purity sample of $ u_mu$-induced charged current, charged pion events in mineral oil (CH$_2$), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CC$pi^+$ cro ss section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities have been measured on a nuclear target and in the 1 GeV energy range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا