ترغب بنشر مسار تعليمي؟ اضغط هنا

Communicating Robot Arm Motion Intent Through Mixed Reality Head-mounted Displays

77   0   0.0 ( 0 )
 نشر من قبل James Tompkin
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient motion intent communication is necessary for safe and collaborative work environments with collocated humans and robots. Humans efficiently communicate their motion intent to other humans through gestures, gaze, and social cues. However, robots often have difficulty efficiently communicating their motion intent to humans via these methods. Many existing methods for robot motion intent communication rely on 2D displays, which require the human to continually pause their work and check a visualization. We propose a mixed reality head-mounted display visualization of the proposed robot motion over the wearers real-world view of the robot and its environment. To evaluate the effectiveness of this system against a 2D display visualization and against no visualization, we asked 32 participants to labeled different robot arm motions as either colliding or non-colliding with blocks on a table. We found a 16% increase in accuracy with a 62% decrease in the time it took to complete the task compared to the next best system. This demonstrates that a mixed-reality HMD allows a human to more quickly and accurately tell where the robot is going to move than the compared baselines.



قيم البحث

اقرأ أيضاً

Optical see-though head-mounted displays (OST HMDs) are one of the key technologies for merging virtual objects and physical scenes to provide an immersive mixed reality (MR) environment to its user. A fundamental limitation of HMDs is, that the user itself cannot be augmented conveniently as, in casual posture, only the distal upper extremities are within the field of view of the HMD. Consequently, most MR applications that are centered around the user, such as virtual dressing rooms or learning of body movements, cannot be realized with HMDs. In this paper, we propose a novel concept and prototype system that combines OST HMDs and physical mirrors to enable self-augmentation and provide an immersive MR environment centered around the user. Our system, to the best of our knowledge the first of its kind, estimates the users pose in the virtual image generated by the mirror using an RGBD camera attached to the HMD and anchors virtual objects to the reflection rather than the user directly. We evaluate our system quantitatively with respect to calibration accuracy and infrared signal degradation effects due to the mirror, and show its potential in applications where large mirrors are already an integral part of the facility. Particularly, we demonstrate its use for virtual fitting rooms, gaming applications, anatomy learning, and personal fitness. In contrast to competing devices such as LCD-equipped smart mirrors, the proposed system consists of only an HMD with RGBD camera and, thus, does not require a prepared environment making it very flexible and generic. In future work, we will aim to investigate how the system can be optimally used for physical rehabilitation and personal training as a promising application.
Purpose: Image guidance is crucial for the success of many interventions. Images are displayed on designated monitors that cannot be positioned optimally due to sterility and spatial constraints. This indirect visualization causes potential occlusion , hinders hand-eye coordination, leads to increased procedure duration and surgeon load. Methods: We propose a virtual monitor system that displays medical images in a mixed reality visualization using optical see-through head-mounted displays. The system streams high-resolution medical images from any modality to the head-mounted display in real-time that are blended with the surgical site. It allows for mixed reality visualization of images in head-, world-, or body-anchored mode and can thus be adapted to specific procedural needs. Results: For typical image sizes, the proposed system exhibits an average end-to-end delay and refresh rate of 214 +- 30 ms and 41:4 +- 32:0 Hz, respectively. Conclusions: The proposed virtual monitor system is capable of real-time mixed reality visualization of medical images. In future, we seek to conduct first pre-clinical studies to quantitatively assess the impact of the system on standard image guided procedures.
Humans are highly skilled in communicating their intent for when and where a handover would occur. However, even the state-of-the-art robotic implementations for handovers display a general lack of communication skills. This study aims to visualize t he internal state and intent of robots for Human-to-Robot Handovers using Augmented Reality. Specifically, we aim to visualize 3D models of the object and the robotic gripper to communicate the robots estimation of where the object is and the pose in which the robot intends to grasp the object. We tested this design via a user study with 16 participants, in which each participant handed over a cube-shaped object to the robot 12 times. Results show that visualizing robot intent using augmented reality substantially improves the subjective experience of the users for handovers. Results also indicate that the effectiveness of augmented reality is even more pronounced for the perceived safety and fluency of the interaction when the robot makes errors in localizing the object.
We design and develop a new shared Augmented Reality (AR) workspace for Human-Robot Interaction (HRI), which establishes a bi-directional communication between human agents and robots. In a prototype system, the shared AR workspace enables a shared p erception, so that a physical robot not only perceives the virtual elements in its own view but also infers the utility of the human agent--the cost needed to perceive and interact in AR--by sensing the human agents gaze and pose. Such a new HRI design also affords a shared manipulation, wherein the physical robot can control and alter virtual objects in AR as an active agent; crucially, a robot can proactively interact with human agents, instead of purely passively executing received commands. In experiments, we design a resource collection game that qualitatively demonstrates how a robot perceives, processes, and manipulates in AR and quantitatively evaluates the efficacy of HRI using the shared AR workspace. We further discuss how the system can potentially benefit future HRI studies that are otherwise challenging.
Mobile virtual reality (VR) head mounted displays (HMD) have become popular among consumers in recent years. In this work, we demonstrate real-time egocentric hand gesture detection and localization on mobile HMDs. Our main contributions are: 1) A no vel mixed-reality data collection tool to automatic annotate bounding boxes and gesture labels; 2) The largest-to-date egocentric hand gesture and bounding box dataset with more than 400,000 annotated frames; 3) A neural network that runs real time on modern mobile CPUs, and achieves higher than 76% precision on gesture recognition across 8 classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا