ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconciling cooperation, biodiversity and stability in complex ecological communities

99   0   0.0 ( 0 )
 نشر من قبل Marco Formentin
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperative behaviors. However, standard modeling of population dynamics based on Lotka-Volterra type of equations predicts that ecosystem stability should decrease as the number of species in the community increases and that cooperative systems are less stable than communities with only competitive and/or exploitative interactions. Here we propose a stochastic model of population dynamics, which includes exploitative interactions as well as cooperative interactions induced by cross-feeding. The model is exactly solved and we obtain results for relevant macro-ecological patterns, such as species abundance distributions and correlation functions. In the large system size limit, any number of species can coexist for a very general class of interaction networks and stability increases as the number of species grows. For pure mutualistic/commensalistic interactions we determine the topological properties of the network that guarantee species coexistence. We also show that the stationary state is globally stable and that inferring species interactions through species abundance correlation analysis may be misleading. Our theoretical approach thus show that appropriate models of cooperation naturally leads to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.



قيم البحث

اقرأ أيضاً

The far-reaching consequences of ecological interactions in the dynamics of biological communities remain an intriguing subject. For decades, competition has been a cornerstone in ecological processes, but mounting evidence shows that cooperation doe s also contribute to the structure of biological communities. Here, we propose a simple deterministic model for the study of the effects of facilitation and competition in the dynamics of such systems. The simultaneous inclusion of both effects produces rich dynamics and captures the context-dependence observed in the formation of ecological communities. The approach reproduces relevant aspects of primary and secondary plant succession, the effect invasive species, and the survival of rare species. The model also takes into account the role of the ecological priority effect and stress the crucial role of facilitation in conservation efforts and species coexistence.
Why, contrary to theoretical predictions, do marine microbe communities harbor tremendous phenotypic heterogeneity? How can so many marine microbe species competing in the same niche coexist? We discovered a unifying explanation for both phenomena by investigating a non-cooperative game that interpolates between individual-level competitions and species-level outcomes. We identified all equilibrium strategies of the game. These strategies are characterized by maximal phenotypic heterogeneity. They are also neutral towards each other in the sense that an unlimited number of species can co-exist while competing according to the equilibrium strategies. Whereas prior theory predicts that natural selection would minimize trait variation around an optimum value, here we obtained a rigorous mathematical proof that species with maximally variable traits are those that endure. This discrepancy may reflect a disparity between predictions from models developed for larger organisms in contrast to our microbe-centric model. Rigorous mathematics proves that phenotypic heterogeneity is itself a mechanistic underpinning of microbial diversity. This discovery has fundamental ramifications for microbial ecology and may represent an adaptive reservoir sheltering biodiversity in changing environmental conditions.
Surveys of microbial biodiversity such as the Earth Microbiome Project (EMP) and the Human Microbiome Project (HMP) have revealed robust ecological patterns across different environments. A major goal in ecology is to leverage these patterns to ident ify the ecological processes shaping microbial ecosystems. One promising approach is to use minimal models that can relate mechanistic assumptions at the microbe scale to community-level patterns. Here, we demonstrate the utility of this approach by showing that the Microbial Consumer Resource Model (MiCRM) -- a minimal model for microbial communities with resource competition, metabolic crossfeeding and stochastic colonization -- can qualitatively reproduce patterns found in survey data including compositional gradients, dissimilarity/overlap correlations, richness/harshness correlations, and nestedness of community composition. By using the MiCRM to generate synthetic data with different environmental and taxonomical structure, we show that large scale patterns in the EMP can be reproduced by considering the energetic cost of surviving in harsh environments and HMP patterns may reflect the importance of environmental filtering in shaping competition. We also show that recently discovered dissimilarity-overlap correlations in the HMP likely arise from communities that share similar environments rather than reflecting universal dynamics. We identify ecologically meaningful changes in parameters that alter or destroy each one of these patterns, suggesting new mechanistic hypotheses for further investigation. These findings highlight the promise of minimal models for microbial ecology.
A classic measure of ecological stability describes the tendency of a community to return to equilibrium after small perturbation. While many advances show how the network structure of these communities severely constrains such tendencies, few if any of these advances address one of the most fundamental properties of network structure: heterogeneity among nodes with different numbers of links. Here we systematically explore this property of degree heterogeneity and find that its effects on stability systematically vary with different types of interspecific interactions. Degree heterogeneity is always destabilizing in ecological networks with both competitive and mutualistic interactions while its effects on networks of predator-prey interactions such as food webs depend on prey contiguity, i.e., the extent to which the species consume an unbroken sequence of prey in community niche space. Increasing degree heterogeneity stabilizes food webs except those with the most contiguity. These findings help explain previously unexplained observations that food webs are highly but not completely contiguous and, more broadly, deepens our understanding of the stability of complex ecological networks with important implications for other types of dynamical systems.
121 - Stefano Allesina , Si Tang 2011
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species intera ct at random. However, in natural systems pairs of species have well-defined interactions (e.g., predator-prey, mutualistic or competitive). Here we extend Mays results to these relationships and find remarkable differences between predator-prey interactions, which increase stability, and mutualistic and competitive, which are destabilizing. We provide analytic stability criteria for all cases. These results have broad applicability in ecology. For example, we show that, surprisingly, the probability of stability for predator-prey networks is decreased when we impose realistic food web structure or we introduce a large preponderance of weak interactions. Similarly, stability is negatively impacted by nestedness in bipartite mutualistic networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا