ﻻ يوجد ملخص باللغة العربية
We study the asymptotic tail probability of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with exponent -1/2, where the impact of the boundary is captured by the slowly varying function. Yet, the moving boundary may have a stronger effect when the tail is considered at a time close to the return point of the random walk bridge. In the latter case, a phase transition appears in the asymptotics, of which the precise nature depends on the order of distance between zero and the moving boundary.
In this paper we study first-passge percolation models on Delaunay triangulations. We show a sufficient condition to ensure that the asymptotic value of the rescaled first-passage time, called the time constant, is strictly positive and derive some u
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the
The non-random fluctuation is one of the central objects in first passage percolation. It was proved in [Shuta Nakajima. Divergence of non-random fluctuation in First Passage Percolation. {em Electron. Commun. Probab.} 24 (65), 1-13. 2019.] that for
We consider dynamical percolation on the $d$-dimensional discrete torus of side length $n$, $mathbb{Z}_n^d$, where each edge refreshes its status at rate $mu=mu_nle 1/2$ to be open with probability $p$. We study random walk on the torus, where the wa
Let $xi(n, x)$ be the local time at $x$ for a recurrent one-dimensional random walk in random environment after $n$ steps, and consider the maximum $xi^*(n) = max_x xi(n,x)$. It is known that $limsup xi^*(n)/n$ is a positive constant a.s. We prove th