ترغب بنشر مسار تعليمي؟ اضغط هنا

First-passage time asymptotics over moving boundaries for random walk bridges

54   0   0.0 ( 0 )
 نشر من قبل Fiona Sloothaak
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the asymptotic tail probability of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with exponent -1/2, where the impact of the boundary is captured by the slowly varying function. Yet, the moving boundary may have a stronger effect when the tail is considered at a time close to the return point of the random walk bridge. In the latter case, a phase transition appears in the asymptotics, of which the precise nature depends on the order of distance between zero and the moving boundary.

قيم البحث

اقرأ أيضاً

In this paper we study first-passge percolation models on Delaunay triangulations. We show a sufficient condition to ensure that the asymptotic value of the rescaled first-passage time, called the time constant, is strictly positive and derive some u pper bounds for fluctuations. Our proofs are based on renormalization ideas and on the method of bounded increments.
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when $epsilonto 0$, the probability in question decays like $exp{- {beta + o(1)over epsilon^{1/2}}}$, where $beta$ is a positive constant depending on the distribution of the branching random walk. In the special case of i.i.d. Bernoulli$(p)$ random variables (with $0<p<{1over 2}$) assigned on a rooted binary tree, this answers an open question of Robin Pemantle.
94 - Shuta Nakajima 2020
The non-random fluctuation is one of the central objects in first passage percolation. It was proved in [Shuta Nakajima. Divergence of non-random fluctuation in First Passage Percolation. {em Electron. Commun. Probab.} 24 (65), 1-13. 2019.] that for a particular asymptotic direction, it diverges in a lattice first passage percolation with an explicit lower bound. In this paper, we discuss the non-random fluctuation in Euclidean first passage percolations and show that it diverges in dimension $dgeq 2$ in this model also. Compared with the result in cite{N19}, the present result is proved for any direction and improves the lower bound.
We consider dynamical percolation on the $d$-dimensional discrete torus of side length $n$, $mathbb{Z}_n^d$, where each edge refreshes its status at rate $mu=mu_nle 1/2$ to be open with probability $p$. We study random walk on the torus, where the wa lker moves at rate $1/(2d)$ along each open edge. In earlier work of two of the authors with A. Stauffer, it was shown that in the subcritical case $p<p_c(mathbb{Z}^d)$, the (annealed) mixing time of the walk is $Theta(n^2/mu)$, and it was conjectured that in the supercritical case $p>p_c(mathbb{Z}^d)$, the mixing time is $Theta(n^2+1/mu)$; here the implied constants depend only on $d$ and $p$. We prove a quenched (and hence annealed) version of this conjecture up to a poly-logarithmic factor under the assumption $theta(p)>1/2$. Our proof is based on percolation results (e.g., the Grimmett-Marstrand Theorem) and an analysis of the volume-biased evolving set process; the key point is that typically, the evolving set has a substantial intersection with the giant percolation cluster at many times. This allows us to use precise isoperimetric properties of the cluster (due to G. Pete) to infer rapid growth of the evolving set, which in turn yields the upper bound on the mixing time.
Let $xi(n, x)$ be the local time at $x$ for a recurrent one-dimensional random walk in random environment after $n$ steps, and consider the maximum $xi^*(n) = max_x xi(n,x)$. It is known that $limsup xi^*(n)/n$ is a positive constant a.s. We prove th at $liminf_n (logloglog n)xi^*(n)/n$ is a positive constant a.s.; this answers a question of P. Revesz (1990). The proof is based on an analysis of the {em valleys /} in the environment, defined as the potential wells of record depth. In particular, we show that almost surely, at any time $n$ large enough, the random walker has spent almost all of its lifetime in the two deepest valleys of the environment it has encountered. We also prove a uniform exponential tail bound for the ratio of the expected total occupation time of a valley and the expected local time at its bottom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا