ﻻ يوجد ملخص باللغة العربية
We investigated electronic structure and magnetic anisotropy in the Fe/MgO interface of magnetic metal and dielectric insulator under the Cr layer of small electronegativity, by means of the first-principles density functional approach. The result indicates that the interface resonance state gets occupied unlike a typical rigid band picture as the number of Fe layers decreases, finding large perpendicular anisotropies in the oscillating behavior for thickness dependence. We discuss scenarios of the two dimensional van Hove singularity associated with flat band dispersions, and also the accuracies of anisotropy energy in comparison with the available experimental data.
Using first-principles calculations, we elucidate microscopic mechanisms of perpendicular magnetic anisotropy (PMA)in Fe/MgO magnetic tunnel junctions through evaluation of orbital and layer resolved contributions into the total anisotropy value. It
The electric field effect on magnetic anisotropy was studied in an ultrathin Fe(001) monocrystalline layer sandwiched between Cr buffer and MgO tunnel barrier layers, mainly through post-annealing temperature and measurement temperature dependences.
A characteristic dependence of voltage control of perpendicular magnetic anisotropy (VCMA) on oxygen migration at Fe/MgO interfaces was revealed by performing systematic {it ab initio} study of the energetics of the oxygen path around the interface.
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc
The origin of large perpendicular magneto-crystalline anisotropy (PMCA) in Fe/MgO (001) is revealed by comparing Fe layers with and without the MgO. Although Fe-O $p$-$d$ hybridization is weakly present, it cannot be the main origin of the large PMCA