ﻻ يوجد ملخص باللغة العربية
We study the asymptotically flat quasi-local black hole/hairy black hole model with nonzero mass of the scalar filed. We disclose effects of the scalar mass on transitions in a grand canonical ensemble with condensation behaviors of a parameter $psi_{2}$, which is similar to approaches in holographic theories. We find that more negative scalar mass makes the phase transition easier to happen. We also obtain an analytical relation $psi_{2}varpropto(T_{c}-T)^{1/2}$ around the critical phase transition points implying a second order phase transition. Besides the parameter $psi_{2}$, we show that metric solutions can be used to disclose properties of transitions. In this work, we observe that phase transitions in a box are strikingly similar to holographic transitions in the AdS gravity and the similarity provides insights into holographic theories.
We study asymptotically flat black holes with massive graviton hair within the ghost-free bigravity theory. There have been contradictory statements in the literature about their existence -- such solutions were reported some time ago, but later a di
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild-AdS
We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mas
One of the problems in the current asymptotic symmetry would be to extend the black hole to the rotating one. Therefore, in this paper, we obtain a four-dimensional asymptotically flat rotating black hole solution including the supertraslation corrections.
We do a systematic study of the phases of gravity coupled to an electromagnetic field and charged scalar in flat space, with box boundary conditions. The scalar-less box has previously been investigated by Braden, Brown, Whiting and York (and others)