ﻻ يوجد ملخص باللغة العربية
We study asymptotically flat black holes with massive graviton hair within the ghost-free bigravity theory. There have been contradictory statements in the literature about their existence -- such solutions were reported some time ago, but later a different group claimed the Schwarzschild solution to be the only asymptotically flat black hole in the theory. As a result, the controversy emerged. We have analyzed the issue ourselves and have been able to construct such solutions within a carefully designed numerical scheme. We find that for given parameter values there can be one or two asymptotically flat hairy black holes in addition to the Schwarzschild solution. We analyze their perturbative stability and find that they can be stable or unstable, depending on the parameter values. The masses of stable hairy black holes that would be physically relevant range form stellar values up to values typical for supermassive black holes. One of their two metrics is extremely close to Schwarzschild, while all their hair is hidden in the second metric that is not coupled to matter and not directly seen. If the massive bigravity theory indeed describes physics, the hair of such black holes should manifest themselves in violent processes like black hole collisions and should be visible in the structure of the signals detected by LIGO/VIRGO.
Asymptotically flat black holes in $2+1$ dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (b
We do a systematic study of the phases of gravity coupled to an electromagnetic field and charged scalar in flat space, with box boundary conditions. The scalar-less box has previously been investigated by Braden, Brown, Whiting and York (and others)
A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically
We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a si
We investigate whether supertranslation symmetry may appear in a scenario that involves black holes in AdS space. The framework we consider is massive 3D gravity, which admits a rich black hole phase space, including stationary AdS black holes with s