ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Materials Research and the Course of Human Civilization

92   0   0.0 ( 0 )
 نشر من قبل Nicola A. Spaldin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nicola A. Spaldin




اسأل ChatGPT حول البحث

Unless we change direction, we are likely to wind up where we are headed. (Ancient Chinese proverb)



قيم البحث

اقرأ أيضاً

Material and product life cycles are based on complex value chains of technology-specific elements. Resource strategy aspects of essential and strategic raw materials have a direct impact on applications of new functionalized materials or the develop ment of novel products. Thus, an urgent challenge of modern materials science is to obtain information about the supply risk and environmental aspects of resource utilization, especially at an early stage of basic research. Combining the fields of materials science, industrial engineering and resource strategy enables a multidisciplinary research approach to identify specific risks within the value chain, aggregated as the so-called resource criticality. Here, we demonstrate a step-by-step criticality assessment in the sector of basic materials research for multifunctional hexagonal manganite YMnO3, which can be a candidate for future electronic systems. Raw material restrictions can be quantitatively identified, even at such an early stage of materials research, from eleven long-term indicators including our new developed Sector Competition Index. This approach for resource strategy for modern material science integrates two objective targets: reduced supply risk and enhanced environmental sustainability of new functionalized materials, showing drawbacks but also benefits towards a sustainable materials research and development.
Before atomic timekeeping, clocks were set to the skies. But starting in 1972, radio signals began broadcasting atomic seconds and leap seconds have occasionally been added to that stream of atomic seconds to keep the signals synchronized with the ac tual rotation of Earth. Such adjustments were considered necessary because Earths rotation is less regular than atomic timekeeping. In January 2012, a United Nations-affiliated organization could permanently break this link by redefining Coordinated Universal Time. To understand the importance of this potential change, its important to understand the history of human timekeeping.
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter.By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear re sponse regime, the theorem interrelates the spontaneous fluctuations of microscopic variables with the kinetic coefficients that are responsible for energy dissipation.In the quantum form provided by Callen and Welton in their pioneer paper of 1951 for the case of conductors, electrical noise detected at the terminals of a conductor was given in terms of the spectral density of voltage fluctuations, $S_V({omega})$, and was related to the real part of its impedance, $Re[Z({omega})]$, by a simple relation.The drawbacks of this relation concern with: (I) the appearance of a zero point contribution which implies a divergence of the spectrum at increasing frequencies; (ii) the lack of detailing the appropriate equivalent-circuit of the impedance, (iii) the neglect of the Casimir effect associated with the quantum interaction between zero-point energy and boundaries of the considered physical system; (iv) the lack of identification of the microscopic noise sources beyond the temperature model. These drawbacks do not allow to validate the relation with experiments. By revisiting the FDT within a brief historical survey, we shed new light on the existing drawbacks by providing further properties of the theorem, focusing on the electrical noise of a two-terminal sample under equilibrium conditions. Accordingly, we will discuss the duality and reciprocity properties of the theorem, its applications to the ballistic transport regime, to the case of vacuum and to the case of a photon gas.
291 - Steven N. Shore 2012
This article is a commentary on the verdict of the LAquila Six, the group of bureaucrats and scientists tried by an Italian court as a result of their public statements in advance of the quake of 2009 Apr. 6 that left the city in ruins and cause more than 300 deaths. It was not the worst such catastrophic event in recent Italian history, but it was one of -- if not the -- worst failures of risk assessment and preventive action. The six were found guilty and condemned by a first level of the justice system to substantial prison terms. The outcry provoked by the verdict in the world press and the international scientific community has fueled the already fiery debate over whether the six should have been tried at all. They have been presented as martyrs to science being treated as scapegoats by a scientifically illiterate justice system and inflamed local population for not being able to perform the impossible (predict the event). Petitions of support have been drafted and signed by thousands of working scientists and technical experts in many fields excoriating the court and the country for such an outrage against the scientific community, often accompanied by ominous warnings about the chilling effect this will have on the availability of expert advice in times of need. My purpose in this essay is to explain why this view of the events of the trial is misguided, however well intentioned, and misinformed.
The dielectric constant, which defines the polarization of the media, is a key quantity in condensed matter. It determines several electronic and optoelectronic properties important for a plethora of modern technologies from computer memory to field effect transistors and communication circuits. Moreover, the importance of the dielectric constant in describing electromagnetic interactions through screening plays a critical role in understanding fundamental molecular interactions. Here we show that despite its fundamental transcendence, the dielectric constant does not define unequivocally the dielectric properties of two-dimensional (2D) materials due to the locality of their electrostatic screening. Instead, the electronic polarizability correctly captures the dielectric nature of a 2D material which is united to other physical quantities in an atomically thin layer. We reveal a long-sought universal formalism where electronic, geometrical and dielectric properties are intrinsically correlated through the polarizability opening the door to probe quantities yet not directly measurable including the real covalent thickness of a layer. We unify the concept of dielectric properties in any material dimension finding a global dielectric anisotropy index defining their controllability through dimensionality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا