ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the Ultraviolet-Bright Star Y453 in the Globular Cluster M4 (NGC 6121)

65   0   0.0 ( 0 )
 نشر من قبل Van Dixon
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William V. Dixon




اسأل ChatGPT حول البحث

We present a spectral analysis of the UV-bright star Y453 in M4. Model fits to the stars optical spectrum yield T_eff ~ 56,000 K. Fits to the stars FUV spectrum, obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope, reveal it to be considerably hotter, with T_eff ~ 72,000 K. We adopt T_eff = 72,000 +/- 2000 K and log g = 5.7 +/- 0.2 as our best-fit parameters. Scaling the model spectrum to match the stars optical and near-infrared magnitudes, we derive a mass M_* = 0.53 +/- 0.24 M_sun and luminosity log L/L_sun = 2.84 +/- 0.05, consistent with the values expected of an evolved star in a globular cluster. Comparing the star with post-horizontal branch evolutionary tracks, we conclude that it most likely evolved from the blue horizontal branch, departing the AGB before third dredge-up. It should thus exhibit the abundance pattern (O-poor and Na-rich) characteristic of the second-generation (SG) stars in M4. We derive the stars photospheric abundances of He, C, N, O, Si, S, Ti, Cr, Fe, and Ni. CNO abundances are roughly 0.25 dex greater than those of the clusters SG stars, while the Si and S abundances agree match the cluster values. Abundances of the iron-peak elements (except for iron itself) are enhanced by 1 to 3 dex. Rather than revealing the stars origin and evolution, this pattern reflects the combined effects of diffusive and mechanical processes in the stellar atmosphere.

قيم البحث

اقرأ أيضاً

We have analyzed FUSE, COS, GHRS, and Keck HIRES spectra of the UV-bright star Barnard 29 in M13 (NGC 6205). By comparing the photospheric abundances derived from multiple ionization states of C, N, O, Si, and S, we infer an effective temperature T_e ff = 21,400 +/- 400 K. Balmer-line fits yield a surface gravity log g = 3.10 +/- 0.03. We derive photospheric abundances of He, C, N, O, Mg, Al, Si, P, S, Cl, Ar, Ti, Cr, Fe, Ni, and Ge. Barnard 29 exhibits an abundance pattern typical of the first-generation stars in M13, enhanced in oxygen and depleted in aluminum. An underabundance of C and an overabundance of N suggest that the star experienced nonconvective mixing on the RGB. We see no evidence of significant chemical evolution since the star left the RGB; in particular, it did not undergo third dredge-up. Previous workers found that the stars FUV spectra yield an iron abundance about 0.5 dex lower than its optical spectrum, but the iron abundances derived from all of our spectra are consistent with the cluster value. We attribute this difference to our use of model atmospheres without microturbulence, which is ruled out by careful fits to optical absorption features. We derive a mass M_*/M_sun = 0.45 - 0.55 and luminosity log (L_*/L_sun) = 3.26 - 3.35. Comparison with stellar-evolution models suggests that Barnard 29 evolved from a ZAHB star of mass M_*/M_sun between 0.50 and 0.55, near the boundary between the extreme and blue horizontal branches.
The Bright Star in the globular cluster 47 Tucanae (NGC 104) is a post-AGB star of spectral type B8 III. The ultraviolet spectra of late-B stars exhibit a myriad of absorption features, many due to species unobservable from the ground. The Bright Sta r thus represents a unique window into the chemistry of 47 Tuc. We have analyzed observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE), the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope, and the MIKE Spectrograph on the Magellan Telescope. By fitting these data with synthetic spectra, we determine various stellar parameters (T_eff = 10,850 +/- 250 K, log g = 2.20 +/- 0.13) and the photospheric abundances of 26 elements, including Ne, P, Cl, Ga, Pd, In, Sn, Hg, and Pb, which have not previously been published for this cluster. Abundances of intermediate-mass elements (Mg through Ga) generally scale with Fe, while the heaviest elements (Pd through Pb) have roughly solar abundances. Its low C/O ratio indicates that the star did not undergo third dredge-up and suggests that its heavy elements were made by a previous generation of stars. If so, this pattern should be present throughout the cluster, not just in this star. Stellar-evolution models suggest that the Bright Star is powered by a He-burning shell, having left the AGB during or immediately after a thermal pulse. Its mass (0.54 +/- 0.16 M_sun) implies that single stars in 47 Tuc lose 0.1--0.2 M_sun on the AGB, only slightly less than they lose on the RGB.
75 - P.B. Stetson 2014
We present optical and near-infrared UBVRIJHK photometry of stars in the Galactic globular cluster M4 (NGC 6121) based upon a large corpus of observations obtained mainly from public astronomical archives. We concentrate on the RR Lyrae variable star s in the cluster, and make a particular effort to accurately reidentify the previously discovered variables. We have also discovered two new probable RR Lyrae variables in the M4 field: one of them by its position on the sky and its photometric properties is a probable member of the cluster, and the second is a probable background (bulge?) object. We provide accurate equatorial coordinates for all 47 stars identified as RR Lyraes, new photometric measurements for 46 of them, and new period estimates for 45. We have also derived accurate positions and mean photometry for 34 more stars previously identified as variable stars of other types, and for an additional five non-RR Lyrae variable stars identified for the first time here. We present optical and near-infrared color-magnitude diagrams for the cluster and show the locations of the variable stars in them. We present the Bailey (period-amplitude) diagrams and the period-frequency histogram for the RR Lyrae stars in M4 and compare them to the corresponding diagrams for M5 (NGC 5904). We conclude that the RR Lyrae populations in the two clusters are quite similar in all the relevant properties that we have considered. The mean periods, pulsation-mode ratios, and Bailey diagrams of these two clusters show support for the recently proposed Oosterhoff-neutral classification.
Globular clusters display significant variations in their light-element content, pointing to the existence of a second stellar generation formed from the ejecta of an earlier generation. The nature of these internal polluters is still a matter of deb ate: the two most popular scenarios indicate intermediate-mass AGB stars and fast rotating massive stars. Abundances determination for some key elements can help distinguish between these competitor candidates. We present in this paper Y abundances for a sample of 103 red giant branch stars in NGC 6121. Within measurement errors, we find that the [Y/Fe] is constant in this cluster contrary to a recent suggestion. For a subsample of six stars we also find [Rb/Fe] to be constant, consistent with previous studies showing no variation in other s-process elements. We also present a new set of stellar yields for intermediate-mass AGB stellar models of 5 and 6 solar masses, including heavy element s-process abundances. The uncertainties on the mass-loss rate, the mixing-length parameter, and the nuclear reaction rates have a major impact on the stellar abundances. Within the IM-AGB pollution scenario, the constant abundance of heavy elements inside the cluster requires a marginal s-process efficiency in IM-AGB stars. Such a constrain could still be satisfied by the present models assuming a stronger mass-loss rate. The uncertainties mentioned above are limiting the predictive power of intermediate-mass AGB models. For these reasons, at the moment we are not able to clearly rule out their role as main polluters of the second population stars in globular clusters.
We present an observational far-UV (FUV) and near-UV (NUV) study of the core region of the globular cluster NGC 6397. The observations were obtained with the Space Telescope Imaging Spectrograph (STIS, FUV), and the Wide Field Camera 3 (WFC3, NUV) on board the Hubble Space Telescope. Here, we focus on the UV bright stellar populations such as blue stragglers (BSs), white dwarfs (WDs) and cataclysmic variables (CVs). We present the first FUV-NUV color-magnitude diagram (CMD) for this cluster. To support our classification of the stellar populations, we compare our FUV-NUV CMD with optical data from the ACS Survey of Galactic Globular Clusters. The FUV-NUV CMD indicates 16 sources located in the WD area, and ten BSs within the 25x 25 of the STIS FUV data. Eighteen Chandra X-ray sources are located within the FUV field of view. Thirteen of those have a NUV counterpart, of which nine sources also have a FUV counterpart. Out of those, five sources are previously suggested CVs, and indeed all five are located in the WD/CV region in our FUV-NUV CMD. Another CV only has a FUV but no NUV counterpart. We also detect a NUV (but no FUV) counterpart to the MSP located in the core of this cluster. The NUV lightcurves of the CVs and MSP show flickering behaviour typical of CVs. We found that the BSs and CVs are the most centrally concentrated population. This might be an effect of mass segregation or indicate the preferred birth place of BSs and CVs via dynamical interactions in the dense core region of GCs. HB stars are the least centrally concentrated population and absent in the innermost area of the core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا