ترغب بنشر مسار تعليمي؟ اضغط هنا

On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models

142   0   0.0 ( 0 )
 نشر من قبل Valentina D'Orazi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Globular clusters display significant variations in their light-element content, pointing to the existence of a second stellar generation formed from the ejecta of an earlier generation. The nature of these internal polluters is still a matter of debate: the two most popular scenarios indicate intermediate-mass AGB stars and fast rotating massive stars. Abundances determination for some key elements can help distinguish between these competitor candidates. We present in this paper Y abundances for a sample of 103 red giant branch stars in NGC 6121. Within measurement errors, we find that the [Y/Fe] is constant in this cluster contrary to a recent suggestion. For a subsample of six stars we also find [Rb/Fe] to be constant, consistent with previous studies showing no variation in other s-process elements. We also present a new set of stellar yields for intermediate-mass AGB stellar models of 5 and 6 solar masses, including heavy element s-process abundances. The uncertainties on the mass-loss rate, the mixing-length parameter, and the nuclear reaction rates have a major impact on the stellar abundances. Within the IM-AGB pollution scenario, the constant abundance of heavy elements inside the cluster requires a marginal s-process efficiency in IM-AGB stars. Such a constrain could still be satisfied by the present models assuming a stronger mass-loss rate. The uncertainties mentioned above are limiting the predictive power of intermediate-mass AGB models. For these reasons, at the moment we are not able to clearly rule out their role as main polluters of the second population stars in globular clusters.

قيم البحث

اقرأ أيضاً

92 - V. F. Braga 2014
We present new distance determinations to the nearby globular M4 (NGC~6121) based on accurate optical and Near Infrared (NIR) mean magnitudes for fundamental (FU) and first overtone (FO) RR Lyrae variables (RRLs), and new empirical optical and NIR Pe riod-Luminosity (PL) and Period-Wesenheit (PW) relations. We have found that optical-NIR and NIR PL and PW relations are affected by smaller standard deviations than optical relations. The difference is the consequence of a steady decrease in the intrinsic spread of cluster RRL apparent magnitudes at fixed period as longer wavelengths are considered. The weighted mean visual apparent magnitude of 44 cluster RRLs is $left<Vright>=13.329pm0.001$ (standard error of the mean) $pm$0.177 (weighted standard deviation) mag. Distances were estimated using RR Lyr itself to fix the zero-point of the empirical PL and PW relations. Using the entire sample (FU$+$FO) we found weighted mean true distance moduli of 11.35$pm$0.03$pm$0.05 mag and 11.32$pm$0.02$pm$0.07 mag. Distances were also evaluated using predicted metallicity dependent PLZ and PWZ relations. We found weighted mean true distance moduli of 11.283$pm$0.010$pm$0.018 mag (NIR PLZ) and 11.272$pm$0.005$pm$0.019 mag (optical--NIR and NIR PWZ). The above weighted mean true distance moduli agree within 1$sigma$. The same result is found from distances based on PWZ relations in which the color index is independent of the adopted magnitude (11.272$pm$0.004$pm$0.013 mag). These distances agree quite well with the geometric distance provided by citep{kaluzny2013} based on three eclipsing binaries. The available evidence indicates that this approach can provide distances to globulars hosting RRLs with a precision better than 2--3%.
We present a spectral analysis of the UV-bright star Y453 in M4. Model fits to the stars optical spectrum yield T_eff ~ 56,000 K. Fits to the stars FUV spectrum, obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope, reveal it to be considerably hotter, with T_eff ~ 72,000 K. We adopt T_eff = 72,000 +/- 2000 K and log g = 5.7 +/- 0.2 as our best-fit parameters. Scaling the model spectrum to match the stars optical and near-infrared magnitudes, we derive a mass M_* = 0.53 +/- 0.24 M_sun and luminosity log L/L_sun = 2.84 +/- 0.05, consistent with the values expected of an evolved star in a globular cluster. Comparing the star with post-horizontal branch evolutionary tracks, we conclude that it most likely evolved from the blue horizontal branch, departing the AGB before third dredge-up. It should thus exhibit the abundance pattern (O-poor and Na-rich) characteristic of the second-generation (SG) stars in M4. We derive the stars photospheric abundances of He, C, N, O, Si, S, Ti, Cr, Fe, and Ni. CNO abundances are roughly 0.25 dex greater than those of the clusters SG stars, while the Si and S abundances agree match the cluster values. Abundances of the iron-peak elements (except for iron itself) are enhanced by 1 to 3 dex. Rather than revealing the stars origin and evolution, this pattern reflects the combined effects of diffusive and mechanical processes in the stellar atmosphere.
The color magnitude diagram (CMD) of NGC 1851 presents two subgiant branches (SGB), probably due the presence of two populations differing in total CNO content. We test the idea that a difference in total CNO may simulate an age difference when compa ring the CMD of clusters to derive relative ages. We compare NGC 1851 with NGC 6121 (M4), a cluster of very similar [Fe/H]. We find that, with a suitable shift of the CMDs that brings the two red horizontal branches at the same magnitude level, the unevolved main sequence and red giant branch match, but the SGB of NGC 6121 and its red giant branch bump are fainter than in NGC 1851. In particular, the SGB of NGC 6121 is even slightly fainter than the the faint SGB in NGC 1851. Both these features can be explained if the total CNO in NGC 6121 is larger than that in NGC 1851, even if the two clusters are coeval. We conclude by warning that different initial C+N+O abundances between two clusters, otherwise similar in metallicity and age, may lead to differences in the turnoff morphology that can be easily attributed to an age difference.
102 - Eugenio Carretta 2012
We study the distribution of aluminum abundances among red giants in the peculiar globular cluster NGC 1851. Aluminum abundances were derived from the strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES spectra of 50 cluster st ars acquired under the Gaia-ESO public survey. We coupled these abundances with previously derived abundance of O, Na, Mg to fully characterize the interplay of the NeNa and MgAl cycles of H-burning at high temperature in the early stellar generation in NGC 1851. The stars in our sample show well defined correlations between Al,Na and Si; Al is anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily increases going from the first generation stars to the second generation populations with intermediate and extremely modified composition. We confirm on a larger database the results recently obtained by us (Carretta et al. 2011a): the pattern of abundances of proton-capture elements implies a moderate production of Al in NGC 1851. We find evidence of a statistically significant positive correlation between Al and Ba abundances in the more metal-rich component of red giants in NGC 1851.
76 - P.B. Stetson 2014
We present optical and near-infrared UBVRIJHK photometry of stars in the Galactic globular cluster M4 (NGC 6121) based upon a large corpus of observations obtained mainly from public astronomical archives. We concentrate on the RR Lyrae variable star s in the cluster, and make a particular effort to accurately reidentify the previously discovered variables. We have also discovered two new probable RR Lyrae variables in the M4 field: one of them by its position on the sky and its photometric properties is a probable member of the cluster, and the second is a probable background (bulge?) object. We provide accurate equatorial coordinates for all 47 stars identified as RR Lyraes, new photometric measurements for 46 of them, and new period estimates for 45. We have also derived accurate positions and mean photometry for 34 more stars previously identified as variable stars of other types, and for an additional five non-RR Lyrae variable stars identified for the first time here. We present optical and near-infrared color-magnitude diagrams for the cluster and show the locations of the variable stars in them. We present the Bailey (period-amplitude) diagrams and the period-frequency histogram for the RR Lyrae stars in M4 and compare them to the corresponding diagrams for M5 (NGC 5904). We conclude that the RR Lyrae populations in the two clusters are quite similar in all the relevant properties that we have considered. The mean periods, pulsation-mode ratios, and Bailey diagrams of these two clusters show support for the recently proposed Oosterhoff-neutral classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا