ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying Intrinsic Variability of Sagittarius A* using Closure Phase Measurements of the Event Horizon Telescope

67   0   0.0 ( 0 )
 نشر من قبل Freek Roelofs
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

General relativistic magnetohydrodynamic (GRMHD) simulations of accretion disks and jets associated with supermassive black holes show variability on a wide range of timescales. On timescales comparable to or longer than the gravitational timescale $t_G=GM/c^3$, variation may be dominated by orbital dynamics of the inhomogeneous accretion flow. Turbulent evolution within the accretion disk is expected on timescales comparable to the orbital period, typically an order of magnitude larger than $t_G$. For Sgr A*, $t_G$ is much shorter than the typical duration of a VLBI experiment, enabling us to study this variability within a single observation. Closure phases, the sum of interferometric visibility phases on a triangle of baselines, are particularly useful for studying this variability. In addition to a changing source structure, variations in observed closure phase can also be due to interstellar scattering, thermal noise, and the changing geometry of projected baselines over time due to Earth rotation. We present a metric that is able to distinguish the latter two from intrinsic or scattering variability. This metric is validated using synthetic observations of GRMHD simulations of Sgr A*. When applied to existing multi-epoch EHT data of Sgr A*, this metric shows that the data are most consistent with source models containing intrinsic variability from source dynamics, interstellar scattering, or a combination of those. The effects of black hole inclination, orientation, spin, and morphology (disk or jet) on the expected closure phase variability are also discussed.



قيم البحث

اقرأ أيضاً

Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotr on emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intra-hour variability associated with these fields.
The advent of the Event Horizon Telescope (EHT), a millimeter-wave very-long baseline interferometric array, has enabled spatially-resolved studies of the sub-horizon-scale structure for a handful of supermassive black holes. Among these, the superma ssive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), presents the largest angular cross section. Thus far, these studies have focused upon measurements of the black hole spin and the validation of low-luminosity accretion models. However, a critical input into the analysis of EHT data is the structure of the black hole spacetime, and thus these observations provide the novel opportunity to test the applicability of the Kerr metric to astrophysical black holes. Here we present the first simulated images of a radiatively inefficient accretion flow (RIAF) around Sgr A* employing a quasi-Kerr metric that contains an independent quadrupole moment in addition to the mass and spin that fully characterize a black hole in general relativity. We show that these images can be significantly different from the images of a RIAF around a Kerr black hole with the same spin and demonstrate the feasibility of testing the no-hair theorem by constraining the quadrupolar deviation from the Kerr metric with existing EHT data. Equally important, we find that the disk inclination and spin orientation angles are robust to the inclusion of additional parameters, providing confidence in previous estimations assuming the Kerr metric based upon EHT observations. However, at present the limits upon potential modifications of the Kerr metric remain weak.
We have now entered the new era of high-resolution imaging astronomy with the beginning of the Event Horizon Telescope (EHT). The EHT can resolve the dynamics of matter in the immediate vicinity around black holes at and below the horizon scale. One of the candidate black holes, Sagittarius A* flares 1-4 times a day depending on the wavelength. A possible interpretation of these flares could be hotspots generated through magnetic reconnection events in the accretion flow. In this paper, we construct a semi-analytical model for hotspots that include the effects of shearing as a spot moves along the accretion flow. We then explore the ability of the EHT to recover these hotspots. Even including significant systematic uncertainties, such as thermal noise, diffractive scattering, and background emission due to an accretion disk, we were able to recover the hotspots and spacetime structure to sub-percent precision. Moreover, by observing multiple flaring events we show how the EHT could be used to tomographically map spacetime. This provides new avenues for testing relativistic fluid dynamics and general relativity near the event horizon of supermassive black holes.
It has been proposed that Very Long Baseline Interferometry (VLBI) at sub-millimeter waves will allow us to image the shadow of the black hole in the center of our Milky Way, Sagittarius A* (Sgr A*), and thereby test basic predictions of general rela tivity. This paper presents imaging simulations of a new Space VLBI mission concept. An initial design study of the concept has been presented as the Event Horizon Imager (EHI). The EHI may be suitable for imaging Sgr A* at high frequencies (up to ~690 GHz), which has significant advantages over performing ground-based VLBI at 230 GHz. The concept EHI design consists of two or three satellites in polar or equatorial circular Medium-Earth Orbits with slightly different radii. Due to the relative drift of the satellites along the individual orbits, this setup will result in a dense spiral-shaped uv-coverage with long baselines (up to ~60 Glambda), allowing for extremely high-resolution and high-fidelity imaging of radio sources. We simulate EHI observations of general relativistic magnetohydrodynamics models of Sgr A* and calculate the expected noise based on preliminary system parameters. On long baselines, where the signal-to-noise ratio may be low, fringes could be detected if the system is sufficiently phase stable and the satellite orbits can be reconstructed with sufficient accuracy. Averaging visibilities accumulated over multiple epochs of observations could then help improving the image quality. With three satellites, closure phases could be used for imaging. Our simulations show that the EHI could be capable of imaging the black hole shadow of Sgr A* with a resolution of 4 uas (about 8% of the shadow diameter) within several months of observing time. The EHI concept could thus be used to measure black hole shadows much more precisely than with ground-based VLBI, allowing for stronger tests of general relativity and accretion models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا