ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints from thermal Sunyaev-Zeldovich cluster counts and power spectrum combined with CMB

109   0   0.0 ( 0 )
 نشر من قبل Laura Salvati
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal Sunyaev-Zeldovich effect is one of the recent probes of cosmology and large scale structures. We update constraints on cosmological parameters from galaxy clusters observed by the Planck satellite in a first attempt to combine cluster number counts and power spectrum of hot gas, using the new value of the optical depth, and sampling at the same time on cosmological and scaling-relation parameters. We find that in the $Lambda$CDM model, the addition of tSZ power spectrum provides only small improvements with respect to number counts only, leading to the $68%$ c.l. constraints $Omega_m = 0.32 pm 0.02$, $sigma_8 = 0.77pm0.03 $ and $sigma_8 (Omega_m/0.3)^{1/3}= 0.78pm0.03$ and lowering the discrepancy with CMB primary anisotropies results (updated with the new value of $tau$) to $simeq 1.6, sigma$ on $sigma_8$. We analyse extensions to standard model, considering the effect of massive neutrinos and varying the equation of state parameter for dark energy. In the first case, we find that the addition of tSZ power spectrum helps in strongly improving cosmological constraints with respect to number counts only results, leading to the $95%$ upper limit $sum m_{ u}< 1.53 , text{eV}$. For the varying dark energy EoS scenario, we find again no important improvements when adding tSZ power spectrum, but still the combination of tSZ probes is able in providing constraints, producing $w = -1.0pm 0.2$. In all cosmological scenari the mass bias to reconcile CMB and tSZ probes remains low: $(1-b)lesssim 0.66$ as compared to estimates from weak lensing and Xray mass estimate comparisons or numerical simulations.

قيم البحث

اقرأ أيضاً

We consistently include the effect of massive neutrinos in the thermal Sunyaev Zeldovich (SZ) power spectrum and cluster counts analyses, highlighting subtle dependencies on the total neutrino mass and data combination. In particular, we find that us ing the transfer functions for Cold Dark Matter (CDM) + baryons in the computation of the halo mass function, instead of the transfer functions including neutrino perturbations, as prescribed in recent work, yields a $approx$ 0.25% downward shift of the $sigma_8$ constraint from tSZ power spectrum data, with a fiducial neutrino mass $Sigma m_ u=0.06$ eV. In $Lambda$CDM, with an X-ray mass bias corresponding to the expected hydrostatic mass bias, i.e., $(1-b)simeq0.8$, our constraints from Planck SZ data are consistent with the latest results from SPT, DES-Y1 and KiDS+VIKING-450. In $ uLambda$CDM, our joint analyses of Planck SZ with Planck 2015 primary CMB yield a small improvement on the total neutrino mass bound compared to the Planck 2015 primary CMB constraint, as well as $(1-b)=0.64pm0.04$~(68%~CL). For forecasts, we find that competitive neutrino mass measurements using cosmic variance limited SZ power spectrum require masking the heaviest clusters and probing the small-scale SZ power spectrum up to $ell_mathrm{max}approx10^4$. Although this is challenging, we find that SZ power spectrum can realistically be used to tightly constrain intra-cluster medium properties: we forecast a 2% determination of the X-ray mass bias by combining CMB-S4 and our mock SZ power spectrum with $ell_mathrm{max}=10^3$.
We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effec t, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass $M$ and SZ signal $Y$ calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude $sigma_8$ and matter density parameter $Omega_{mathrm{m}}$ in a flat $Lambda$CDM model. We test the robustness of our estimates and find that possible biases in the $Y$--$M$ relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that $sigma_8=0.75pm 0.03$, $Omega_{mathrm{m}}=0.29pm 0.02$, and $sigma_8(Omega_{mathrm{m}}/0.27)^{0.3} = 0.764 pm 0.025$. The value of $sigma_8$ is degenerate with the mass bias; if the latter is fixed to a value of 20% we find $sigma_8(Omega_{mathrm{m}}/0.27)^{0.3}=0.78pm 0.01$ and a tighter one-dimensional range $sigma_8=0.77pm 0.02$. We find that the larger values of $sigma_8$ and $Omega_{mathrm{m}}$ preferred by Plancks measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the $Lambda$CDM model, such as a component of massive neutrinos (abridged).
We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, $(1-b)$. In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of $(1-b)$ the tension is mild, only a little over one standard deviation, while it remains substantial ($3.7,sigma$) for the largest estimated value. We also examine constraints on extensions to the base flat $Lambda$CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base $Lambda$CDM model.
While the arcminute-scale Cosmic Microwave Background (CMB) anisotropies are due to secondary effects, point sources dominate the total anisotropy power spectrum. At high frequencies the point sources are primarily in the form of dusty, star-forming galaxies. Both Herschel and Planck have recently measured the anisotropy power spectrum of cosmic infrared background (CIB) generated by dusty, star-forming galaxies from degree to sub-arcminute angular scales, including the non-linear clustering of these galaxies at multipoles of 3000 to 6000 relevant to CMB secondary anisotropy studies. We scale the CIB angular power spectra to CMB frequencies and interpret the combined WMAP-7 year and arcminute-scale Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) CMB power spectra measurements to constrain the Sunyaev-Zeldovich (SZ) effects. Allowing the CIB clustering amplitude to vary, we constrain the amplitudes of thermal and kinetic SZ power spectra at 150 GHz.
We propose a new analysis of small scale CMB data by introducing the cosmological dependency of the foreground signals, focusing first on the thermal Sunyaev-Zeldovich (tSZ) power spectrum, derived from the halo model. We analyse the latest observati ons by the South Pole Telescope (SPT) of the high-$ell$ power (cross) spectra at 90, 150 and 220 GHz, as the sum of CMB and tSZ signals, both depending on cosmological parameters, and remaining contaminants. In order to perform faster analyses, we propose a new tSZ modelling based on machine learning algorithms (namely Random Forest). We show that the additional information contained in the tSZ power spectrum tightens constraints on cosmological and tSZ scaling relation parameters. We combine for the first time the Planck tSZ data with SPT high-$ell$ to derive even stronger constraints. Finally, we show how the amplitude of the remaining kSZ power spectrum varies depending on the assumptions made on both tSZ and cosmological parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا