ﻻ يوجد ملخص باللغة العربية
We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, $(1-b)$. In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of $(1-b)$ the tension is mild, only a little over one standard deviation, while it remains substantial ($3.7,sigma$) for the largest estimated value. We also examine constraints on extensions to the base flat $Lambda$CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base $Lambda$CDM model.
We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effec
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy
We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500-N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filte
We have constructed all-sky y-maps of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite survey. These reconstructed y-map
The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Plancks wide angular scale and frequency coverage, together with its high sensitivity, allow a detailed study of this