ﻻ يوجد ملخص باللغة العربية
We present an operational and model-independent framework to investigate the concept of no-backwards-in-time signaling. We define no-backwards-in-time signaling conditions, closely related to the spatial no-signaling conditions. These allow for theoretical possibilities in which the future affects the past, nevertheless without signaling backwards in time. This is analogous to non-local but no-signaling spatial correlations. Furthermore, our results shed new light on situations with indefinite causal structure and their connection to quantum theory.
Steering is a physical phenomenon which is not restricted to quantum theory, it is also present in more general, no-signalling theories. Here, we study steering from the point of view of no-signalling theories. First, we show that quantum steering in
We show that non-local resources cannot be used for probabilistic signalling even if one can produce exact clones with the help of a probabilistic quantum cloning machine (PQCM). We show that PQCM cannot help to distinguish two statistical mixtures a
The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyls differential geometry are presented. The theory applied to the case of the relativistic single quantum spin 1/2 leads a novel and unconventional derivation
Quantum nonlocality is arguably among the most counter-intuitive phenomena predicted by quantum theory. In recent years, the development of an abstract theory of nonlocality has brought a much deeper understanding of the subject. In parallel, experim
It is known that if one could clone an arbitrary quantum state one could send signal faster than the speed of light. However it remains interesting to see that if one can perfectly self replicate an arbitrary quantum state, does it violate the no sig