ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-resolved fast neutron resonance radiography at CSNS

106   0   0.0 ( 0 )
 نشر من قبل Tan Zhixin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.

قيم البحث

اقرأ أيضاً

The China Spallation Neutron Source (CSNS) operates in pulsed mode and has a high neutron flux. This provides opportunities for energy resolved neutron imaging by using the TOF (Time Of Flight) approach. An Energy resolved neutron imaging instrument (ERNI) is being built at the CSNS but significant challenges for the detector persist because it simultaneously requires a spatial resolution of less than 100 {mu}m, as well as a microsecond-scale timing resolution. This study constructs a prototype of an energy resolved neutron imaging detector based on the fast optical camera, TPX3Cam coupled with an image intensifier. To evaluate its performance, a series of proof of principle experiments were performed in the BL20 at the CSNS to measure the spatial resolution and the neutron wavelength spectrum, and perform neutron imaging with sliced wavelengths and Bragg edge imaging of the steel sample. A spatial resolution of 57 {mu}m was obtained for neutron imaging by using the centroiding algorithm, the timing resolution was on the microsecond scale and the measured wavelength spectrum was identical to that measured by a beam monitor. In addition, any wavelengths can be selected for the neutron imaging of the given object, and the detector can be used for Bragg edge imaging. The results show that our detector has good performances and can satisfy the requirements of ERNI for detectors at the CSNS
121 - Binbin Qi , Yang Li (3 2019
The Back-n white neutron beam line, which uses back-streaming white neutrons from the spallation target of the China Spallation Neutron Source, is used for nuclear data measurements. A Micromegas-based neutron detector with two variants was specially developed to measure the beam spot distribution for this beam line. In this article, the design, fabrication, and characterization of the detector are described. The results of the detector performance tests are presented, which include the relative electron transparency, the gain and the gain uniformity, and the neutron beam profile reconstruction capability. The result of the first measurement of the Back-n neutron beam spot distribution is also presented.
Energy-resolved neutron imaging at a pulsed source utilizes the energy-dependent neutron transmission measured via time-of-flight to extract quantitative information about the internal microstructure of an object. At the RADEN instrument at J-PARC in Japan, we use cutting-edge detectors employing micro-pattern detectors or fast Li-glass scintillators and fast, all-digital data acquisition to perform such measurements, while continuing their development toward better utilization of the intense neutron source. In particular, for the Micro-Pixel Chamber based Neutron Imaging Detector ({mu}NID), a micro-pattern detector with a 400 {mu}m pitch and employing 3He for neutron conversion, we have successfully improved the spatial resolution from 200 to 100 {mu}m, increased the detection efficiency from 18 to 26% for thermal neutrons, and increased the maximum count rate from 0.4 to 1 Mcps. We are also testing a new readout element with a 215 {mu}m pitch for further improved spatial resolution, and a {mu}NID with boron-based neutron converter for increased rate performance.
In a previous work we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white- beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.
70 - X.Y. Ji , P. Cao , T. Yu 2018
the main physics goal for Back-n white neutron facility at China Spallation Neutron Source (CSNS) is to measure nuclear data. The energy of neutrons is one of the most important parameters for measuring nuclear data. Method of time of flight (TOF) is used to obtain the energy of neutrons. The time when proton bunches hit the thick tungsten target is considered as the start point of TOF. T0 signal, generated from the CSNS accelerator, represents this start time. Besides, the T0 signal is also used as the gate control signal that triggers the readout electronics. Obviously, the timing precision of T0 directly affects the measurement precision of TOF and controls the running or readout electronics. In this paper, the T0 fan-out for Back-n white neutron facility at CSNS is proposed. The T0 signal travelling from the CSNS accelerator is fanned out to the two underground experiment stations respectively over long cables. To guarantee the timing precision, T0 signal is conditioned with good signal edge. Furthermore, techniques of signal pre-emphasizing and equalizing are used to improve signal quality after T0 being transmitted over long cables with about 100 m length. Experiments show that the T0 fan-out works well, the T0 signal transmitted over 100 m remains a good time resolution with a standard deviation of 25 ps. It absolutely meets the required accuracy of the measurement of TOF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا