ترغب بنشر مسار تعليمي؟ اضغط هنا

A solar eruption driven by rapid sunspot rotation

120   0   0.0 ( 0 )
 نشر من قبل Guiping Ruan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at $sim$10$^circ$ per hour rate during a period of 6 hours prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the HMI observation, for an area along the polarity inversion line underneath the filament, we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field ($B_h$) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the Non-Linear Force-Free-Field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidences that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of $B_h$ may be used to discern the driving mechanism of eruptions.



قيم البحث

اقرأ أيضاً

93 - Beili Ying , Li Feng , Lei Lu 2018
Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have been rarely investigated. We present the analyses of a small-scale short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only for four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics including a very short duration of the main acceleration phase ($<$ 2 minutes), a rather high maximal acceleration rate ($sim$50 km s$^{-2}$) and peak velocity ($sim$1800 km s$^{-1}$). The fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of $sim$320 MHz of the fundamental band. The type II source is formed at a low height of below $1.1~mathrm{R_{odot}}$ less than $sim2$ minutes after the onset of the main acceleration phase. Through the band split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1 to 2.3 $~mathrm{R_{odot}}$. We find that the CME ($sim4times10^{30},mathrm{erg}$) and flare ($sim1.6times10^{30},mathrm{erg}$) consume similar amount of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share the similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.
75 - E. Fossat 2017
We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes. The GOLF instrum ent on board the SOHO space observatory has provided two decades of full-disk helioseismic data. In the present study, we search for possible collective frequency modulations that are produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties. For oscillatory periods in the range between 9 and nearly 48 hours, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguouslyprovide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations. Previously, p-mode helioseismology allowed the g-mode period equidistance parameter $P_0$ to be bracketed inside a narrow range, between approximately 34 and 35 minutes. Here, $P_0$ is measured to be 34 min 01 s, with a 1 s uncertainty. The previously unknown g-mode splittings have now been measured from a non-synodic reference with very high accuracy, and they imply a mean weighted rotation of 1277 $pm$ 10 nHz (9-day period) of their kernels, resulting in a rapid rotation frequency of 1644 $pm$ 23 nHz (period of one week) of the solar core itself, which is a factor 3.8 $pm$ 0.1 faster than the rotation of the radiative envelope. The g modes are known to be the keys to a better understanding of the structure and dynamics of the solar core. Their detection with these precise parameters will certainly stimulate a new era of research in this field.
We present SDO/AIA observation of three types of fast-mode propagating magnetosonic waves in a GOES C3.0 flare on 2013 April 23, which was accompanied by a prominence eruption and a broad coronal mass ejection (CME). During the fast rising phase of t he prominence, a large-scale dome-shaped extreme ultraviolet (EUV) wave firstly formed ahead of the CME bubble and propagated at a speed of about 430 km/s in the CMEs lateral direction. One can identify the separation process of the EUV wave from the CME bubble. The reflection effect of the on-disk counterpart of this EUV wave was also observed when it interacted with a remote active region. Six minutes after the first appearance of the EUV wave, a large-scale quasi-periodic EUV train with a period of about 120 seconds appeared inside the CME bubble, which emanated from the flare epicenter and propagated outward at an average speed up to 1100 km/s. In addition, another narrow quasi-periodic EUV wave train was observed along a closed-loop system connecting two adjacent active regions, which also emanated from the flare epicenter, propagated at a speed of about475 km/s and with a period of about 110 seconds. We propose that all the observed waves are fast-mode magnetosonic waves, in which the large-scale dome-shaped EUV wave ahead of the CME bubble was driven by the expansion of the CME bubble, while the large-scale quasi-periodic EUV train within the CME bubble and the narrow quasi-periodic EUV wave train along the closed-loop system were excited by the intermittent energy-releasing process in the flare. Coronal seismology application and energy carried by the waves are also estimated based on the measured wave parameters.
Solar eruptions are spectacular magnetic explosions in the Suns corona, and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies that may not generally exist in the pre-eruption source region of corona . Here, using fully three-dimensional magnetohydrodynamic simulations with high accuracy, we show that solar eruptions can be initiated in a single bipolar configuration with no additional special topology. Through photospheric shearing motion alone, an electric current sheet forms in the highly sheared core field of the magnetic arcade during its quasi-static evolution. Once magnetic reconnection sets in, the whole arcade is expelled impulsively, forming a fast-expanding twisted flux rope with a highly turbulent reconnecting region underneath. The simplicity and efficacy of this scenario argue strongly for its fundamental importance in the initiation of solar eruptions.
We study a sequence of eruptive events including filament eruption, a GOES C4.3 flare and a coronal mass ejection. We aim to identify the possible trigger(s) and precursor(s) of the filament destabilisation; investigate flare kernel characteristics; flare ribbons/kernels formation and evolution; study the interrelation of the filament-eruption/flare/coronal-mass-ejection phenomena as part of the integral active-region magnetic field configuration; determine Halpha line profile evolution during the eruptive phenomena. Multi-instrument observations are analysed including Halpha line profiles, speckle images at Halpha-0.8 AA and Halpha+0.8 AA from IBIS at DST/NSO, EUV images and magnetograms from the SDO, coronagraph images from STEREO and the X-ray flux observations from FERMI and GOES. We establish that the filament destabilisation and eruption are the main trigger for the flaring activity. A surge-like event with a circular ribbon in one of the filament footpoints is determined as the possible trigger of the filament destabilisation. Plasma draining in this footpoint is identified as the precursor for the filament eruption. A magnetic flux emergence prior to the filament destabilisation followed by a high rate of flux cancelation of 1.34$times10^{16}$ Mx s$^{-1}$ is found during the flare activity. The flare X-ray lightcurves reveal three phases that are found to be associated with three different ribbons occurring consecutively. A kernel from each ribbon is selected and analysed. The kernel lightcurves and H alpha line profiles reveal that the emission increase in the line centre is stronger than that in the line wings. A delay of around 5-6 mins is found between the increase in the line centre and the occurrence of red asymmetry. Only red asymmetry is observed in the ribbons during the impulsive phases. Blue asymmetry is only associated with the dynamic filament.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا