ﻻ يوجد ملخص باللغة العربية
Many machine learning tools for regression are based on recursive partitioning of the covariate space into smaller regions, where the regression function can be estimated locally. Among these, regression trees and their ensembles have demonstrated impressive empirical performance. In this work, we shed light on the machinery behind Bayesian variants of these methods. In particular, we study Bayesian regression histograms, such as Bayesian dyadic trees, in the simple regression case with just one predictor. We focus on the reconstruction of regression surfaces that are piecewise constant, where the number of jumps is unknown. We show that with suitably designed priors, posterior distributions concentrate around the true step regression function at a near-minimax rate. These results do not require the knowledge of the true number of steps, nor the width of the true partitioning cells. Thus, Bayesian dyadic regression trees are fully adaptive and can recover the true piecewise regression function nearly as well as if we knew the exact number and location of jumps. Our results constitute the first step towards understanding why Bayesian trees and their ensembles have worked so well in practice. As an aside, we discuss prior distributions on balanced interval partitions and how they relate to an old problem in geometric probability. Namely, we relate the probability of covering the circumference of a circle with random arcs whose endpoints are confined to a grid, a new variant of the original problem.
Since their inception in the 1980s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal no
The logistic regression model is the most popular model for analyzing binary data. In the absence of any prior information, an improper flat prior is often used for the regression coefficients in Bayesian logistic regression models. The resulting int
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a ran
For two vast families of mixture distributions and a given prior, we provide unified representations of posterior and predictive distributions. Model applications presented include bivariate mixtures of Gamma distributions labelled as Kibble-type, no
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a post