ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Minor Actinides Transmutation in PWR MOX fuel

84   0   0.0 ( 0 )
 نشر من قبل Cenxi Yuan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The management of long-lived radionuclides in spent fuel is a key issue to achieve the closed nuclear fuel cycle and the sustainable development of nuclear energy. Partitioning-Transmutation is supposed to be an efficient method to treat the long-lived radionuclides in spent fuel. Some Minor Actinides (MAs) have very long half-lives among the radionuclides in the spent fuel. Accordingly, the study of MAs transmutation is a significant work for the post-processing of spent fuel. In the present work, the transmutations in Pressurized Water Reactor (PWR) mixed oxide (MOX) fuel are investigated through the Monte Carlo based code RMC. Two kinds of MAs, $^{237}$Np and five MAs ($^{237}$Np, $^{241}$Am, $^{243}$Am, $^{244}$Cm and $^{245}$Cm) are incorporated homogeneously into the MOX fuel assembly. The transmutation of MAs is simulated with different initial MOX concentrations. The results indicate an overall nice efficiency of transmutation in both initial MOX concentrations, especially for the two kinds of MAs primarily generated in the UOX fuel, $^{237}$Np and $^{241}$Am. In addition, the inclusion of $^{237}$Np in MOX has no large influence for other MAs, while the transmutation efficiency of $^{237}$Np is excellent. The transmutation of MAs in MOX fuel depletion is expected to be a new, efficient nuclear spent fuel management method for the future nuclear power generation.



قيم البحث

اقرأ أيضاً

95 - Shihe Yu , Yafen Liu , Pu Yang 2021
The neutronic properties of Molten Salt Reactor are different from that of traditional solid-fuel reactors due to its nuclear fuel particularity. Based upon MCNP code, the influence of the size and shape of fuel salt channel on neutron physics of MSR cell was studied systematically in this work. The results show that the infinite multiplication factors increases first and then decreases with the change of graphite cell size under the condition of given fuel volume fraction. In the case of the same FVF and average chord length, when the average chord length is relatively small, the k values with different fuel salt channel shapes are in good agreement; when the average chord length is relatively large, the k values with different fuel salt channel shapes are greatly different. In addition, some examples of practical application of this work are illustrated in the end, including cell selection for the core and thermal expansion displacement analysis of the cell.
The process of turning a proton into a neutron, positron and electron-neutrino in a strong plane-wave electromagnetic field is studied. This process is forbidden in vacuum and is seen to feature an exponential suppression factor which is non-perturba tive in the field amplitude. The suppression is alleviated when the proton experiences a field strength of about ten times the Schwinger critical field in its rest frame or larger. Around this threshold the lifetime of the proton, in its rest frame, is comparable to the conventional neutron decay lifetime. As the field strength is increased, the proton lifetime becomes increasingly short. We investigate possible scenarios where this process may be observed in the laboratory using an ultra-intense laser and a high-energy proton beam with the conclusion, however, that it would be very challenging to observe this effect in the near future.
It is well known that two fission fragments (FFs) are emitted essentially back to back in the laboratory frame. That can be used widely in many applications as a unique signature of fissionable materials. However, such fission fragments are difficult to detect. The energy and angular distributions of neutrons, on the other hand, are easy to measure, and that distribution will carry information about the fission fragments energy and angular spectra, as well as the neutron spectra in the fission fragment rest frame. We propose to investigate the two neutron correlation yield resulting from two FFs as a function of different targets, the angle between the two neutrons and the neutron energies. The preliminary calculation of the two neutron correlation shows a huge asymmetry effect: many more neutrons are emitted anti-parallel to each other than parallel to each other. That asymmetry becomes even more if the energy cut on each neutron is done. This study will potentially permit a new technique for actinide detection for homeland security and safeguards applications as well as improve our knowledge of correlated neutron emission.
A simple method has been used to synthesize nanostructured La0.5Ba0.5CoO3 (LBCO) powders, by confining chemical precursors into the pores of polycarbonate filters. The proposed method allows us to obtain powders formed by crystallites of different si zes, it is scalable and does not involve the use of sophisticated deposition techniques. The area specific polarization resistance of symmetrical cells was studied to analyze the electrochemical behavior of the LBCO nanostructures as cathodes for Solid-Oxide Fuel Cells. We show that the performance is improved by reducing the size of the crystallites, obtaining area specific resistance values of 0.2 Wcm2 at 700C, comparable with newly developed cathodes using novel deposition techniques.
Characterizing electrochemical energy conversion devices during operation is an important strategy for correlating device performance with the properties of cell materials under real operating conditions. While operando characterization has been used extensively for low temperature electrochemical cells, these techniques remain challenging for solid oxide electrochemical cells due to the high temperatures and reactive gas atmospheres these cells require. Operando X-ray diffraction measurements of solid oxide electrochemical cells could detect changes in the crystal structure of the cell materials, which can be useful for understanding degradation process that limit device lifetimes, but the experimental capability to perform operando X-ray diffraction on the fuel electrodes of these cells has not been demonstrated. Here we present the first experimental apparatus capable of performing X-ray diffraction measurements on the fuel electrodes of high temperature solid oxide electrochemical cells during operation under reducing gas atmospheres. We present data from an example experiment with a model solid oxide cell to demonstrate that this apparatus can collect X-ray diffraction spectra during electrochemical cell operation at high temperatures in humidified H2 gas. Measurements performed using this apparatus can reveal new insights about solid oxide fuel cell and solid oxide electrolyzer cell degradation mechanisms to enable the design of durable, high performance devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا