ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron effective mass and mobility limits in degenerate perovskite stannate BaSnO$_3$

77   0   0.0 ( 0 )
 نشر من قبل Christian A. Niedermeier
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high room temperature mobility and the electron effective mass in BaSnO$_3$ are investigated in depth by evaluation of the free carrier absorption observed in infrared spectra for epitaxial films with free electron concentrations from $8.3 times 10^{18}$ to $7.3 times 10^{20}$~cm$^{-3}$. Both the optical band gap widening by conduction band filling and the carrier scattering mechanisms in the low and high doping regimes are consistently described employing parameters solely based on the intrinsic physical properties of BaSnO$_3$. The results explain the current mobility limits in epitaxial films and demonstrate the potential of BaSnO$_3$ to outperform established wide band gap semiconductors also in the moderate doping regime.



قيم البحث

اقرأ أيضاً

Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics compo nents. Perovskite barium stannate (BaSnO3), a new TCO or TOS system, is a potential platform for realizing optoelectronic devices and observing novel electronic quantum states due to its high electron mobility, excellent thermal stability, high transparency, structural versatility, and flexible doping controllability at room temperature. This article reviews recent progress in the doped BaSnO3 system, discussing the wide physical properties, electron-scattering mechanism, and demonstration of key semiconducting devices such as pn diodes and field-effect transistors. Moreover, we discuss the pathways to achieving two-dimensional electron gases at the interface between BaSnO3 and other perovskite oxides and describe remaining challenges for observing novel quantum phenomena at the heterointerface.
Cubic perovskite oxides are emerging high-mobility transparent conducting oxides (TCOs), but Ge-based TCOs had not been known until the discovery of metastable cubic SrGeO$_3$. $0.5 times 0.4 times 0.2$-mm$^3$ large single crystals of the cubic SrGeO $_3$ perovskite were successfully synthesized employing the high-pressure flux method. The phonon spectrum is determined from the IR optical reflectance and Raman-scattering analysis to evaluate the electron transport governed by optical phonon scattering. A calculated room-temperature mobility on the order of $3.9 times 10^2$ cm$^2$V$^{-1}$s$^{-1}$ is obtained, identifying cubic SrGeO$_3$ as one of the most promising TCOs. Employing classical phonon theory and a combined experimental-theoretical approach, a comprehensive analysis of the intrinsic electron mobility in the cubic perovskite semiconductors SrGeO$_3$, BaSnO$_3$, and SrTiO$_3$ is provided based on the magnitude of polarization and eigenfrequency of optically active phonons.
Due to the photo-instability and hysteresis of TiO$_2$ electron transport layer (ETL) in perovskite solar cells (PSCs), novel electron transport materials are highly demanded. Here, we show ideal band alignment between La-doped BaSnO$_3$ (LBSO) and m ethyl ammonium (MA) lead iodide perovskite (MAPbI$_3$). The CH$_3$NH$_3$PbI$_3$/La$_x$Ba$_{(1-x)}$SnO$_3$ interface forms a stable all-perovskite heterostructure. The selective band alignment is manipulated with band gap renormalization by La-doping on the Ba site. LBSO shows high mobility, photo-stability, and structural stability, promising the next generation ETL materials.
By inserting a SrZrO$_3$ buffer layer between the film and the substrate, we demonstrate a significant reduction of the threading dislocation density with an associated improvement of the electron mobility in La:BaSnO$_3$ films. A room temperature mo bility of 140 cm$^2$ V$^{-1}text{s}^{-1}$ is achieved for 25-nm-thick films without any post-growth treatment. The density of threading dislocations is only $4.9times 10^{9}$ cm$^{-2}$ for buffered films prepared on (110) TbScO$_3$ substrates by pulsed laser deposition.
Contrary to the common belief that electron-electron interaction (EEI) should be negligible in s-orbital-based conductors, we demonstrated that the EEI effect could play a significant role on electronic transport leading to the misinterpretation of t he Hall data. We show that the EEI effect is primarily responsible for an increase in the Hall coefficient in the La-doped SrSnO3 films below 50 K accompanied by an increase in the sheet resistance. The quantitative analysis of the magnetoresistance (MR) data yielded a large phase coherence length of electrons exceeding 450 nm at 1.8 K and revealed the electron-electron interaction being accountable for breaking of electron phase coherency in La-doped SrSnO3 films. These results while providing critical insights into the fundamental transport behavior in doped stannates also indicate the potential applications of stannates in quantum coherent electronic devices owing to their large phase coherence length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا