ﻻ يوجد ملخص باللغة العربية
Following criticisms against the journal Impact Factor, new journal influence scores have been developed such as the Eigenfactor or the Prestige Scimago Journal Rank. They are based on PageRank type algorithms on the cross-citations transition matrix of the citing-cited network. The PageRank algorithm performs a smoothing of the transition matrix combining a random walk on the data network and a teleportation to all possible nodes with fixed probabilities (the damping factor being $alpha= 0.85$). We reinterpret this smoothing matrix as the mean of a posterior distribution of a Dirichlet-multinomial model in an empirical Bayes perspective. We suggest a simple yet efficient way to make a clear distinction between structural and sampling zeroes. This allows us to contrast cases with self-citations included or excluded to avoid overvalued journal bias. We estimate the model parameters by maximizing the marginal likelihood with a Majorize-Minimize algorithm. The procedure ends up with a score similar to the PageRank ones but with a damping factor depending on each journal. The procedures are illustrated with an example about cross-citations among 47 statistical journals studied by Varin et. al. (2016).
Empirical Bayes methods have been around for a long time and have a wide range of applications. These methods provide a way in which historical data can be aggregated to provide estimates of the posterior mean. This thesis revisits some of the empiri
The simultaneous estimation of many parameters $eta_i$, based on a corresponding set of observations $x_i$, for $i=1,ldots, n$, is a key research problem that has received renewed attention in the high-dimensional setting. %The classic example involv
Rank data arises frequently in marketing, finance, organizational behavior, and psychology. Most analysis of rank data reported in the literature assumes the presence of one or more variables (sometimes latent) based on whose values the items are ran
Scientific journals are the repositories of the gradually accumulating knowledge of mankind about the world surrounding us. Just as our knowledge is organised into classes ranging from major disciplines, subjects and fields to increasingly specific t
Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE