ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonparametric empirical Bayes and maximum likelihood estimation for high-dimensional data analysis

140   0   0.0 ( 0 )
 نشر من قبل Lee Dicker
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE) for mixture models, has been known for decades. However, implementation and theoretical analysis of the Kiefer-Wolfowitz NPMLE are notoriously difficult. A fast algorithm was recently proposed that makes NPMLE-based procedures feasible for use in large-scale problems, but the algorithm calculates only an approximation to the NPMLE. In this paper we make two contributions. First, we provide upper bounds on the convergence rate of the approximate NPMLEs statistical error, which have the same order as the best known bounds for the true NPMLE. This suggests that the approximate NPMLE is just as effective as the true NPMLE for statistical applications. Second, we illustrate the promise of NPMLE procedures in a high-dimensional binary classification problem. We propose a new procedure and show that it vastly outperforms existing methods in experiments with simulated data. In real data analyses involving cancer survival and gene expression data, we show that it is very competitive with several recently proposed methods for regularized linear discriminant analysis, another popular approach to high-dimensional classification.



قيم البحث

اقرأ أيضاً

The simultaneous estimation of many parameters $eta_i$, based on a corresponding set of observations $x_i$, for $i=1,ldots, n$, is a key research problem that has received renewed attention in the high-dimensional setting. %The classic example involv es estimating a vector of normal means $mu_i$ subject to a fixed variance term $sigma^2$. However, Many practical situations involve heterogeneous data $(x_i, theta_i)$ where $theta_i$ is a known nuisance parameter. Effectively pooling information across samples while correctly accounting for heterogeneity presents a significant challenge in large-scale estimation problems. We address this issue by introducing the Nonparametric Empirical Bayes Smoothing Tweedie (NEST) estimator, which efficiently estimates $eta_i$ and properly adjusts for heterogeneity %by approximating the marginal density of the data $f_{theta_i}(x_i)$ and applying this density to via a generalized version of Tweedies formula. NEST is capable of handling a wider range of settings than previously proposed heterogeneous approaches as it does not make any parametric assumptions on the prior distribution of $eta_i$. The estimation framework is simple but general enough to accommodate any member of the exponential family of distributions. %; a thorough study of the normal means problem subject to heterogeneous variances is presented to illustrate the proposed framework. Our theoretical results show that NEST is asymptotically optimal, while simulation studies show that it outperforms competing methods, with substantial efficiency gains in many settings. The method is demonstrated on a data set measuring the performance gap in math scores between socioeconomically advantaged and disadvantaged students in K-12 schools.
128 - Jiaqi Li , Liya Fu 2021
As an effective nonparametric method, empirical likelihood (EL) is appealing in combining estimating equations flexibly and adaptively for incorporating data information. To select important variables and estimating equations in the sparse high-dimen sional model, we consider a penalized EL method based on robust estimating functions by applying two penalty functions for regularizing the regression parameters and the associated Lagrange multipliers simultaneously, which allows the dimensionalities of both regression parameters and estimating equations to grow exponentially with the sample size. A first inspection on the robustness of estimating equations contributing to the estimating equations selection and variable selection is discussed from both theoretical perspective and intuitive simulation results in this paper. The proposed method can improve the robustness and effectiveness when the data have underlying outliers or heavy tails in the response variables and/or covariates. The robustness of the estimator is measured via the bounded influence function, and the oracle properties are also established under some regularity conditions. Extensive simulation studies and a yeast cell data are used to evaluate the performance of the proposed method. The numerical results reveal that the robustness of sparse estimating equations selection fundamentally enhances variable selection accuracy when the data have heavy tails and/or include underlying outliers.
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of a graph denoted by $K$ diverge to infinity. Finally, we display the estimation results in a Monte Carlo simulation considering different numbers of latent variables. Besides, we make a comparison between Laplace and variational approximations for inference of our model.
High-dimensional statistical inference with general estimating equations are challenging and remain less explored. In this paper, we study two problems in the area: confidence set estimation for multiple components of the model parameters, and model specifications test. For the first one, we propose to construct a new set of estimating equations such that the impact from estimating the high-dimensional nuisance parameters becomes asymptotically negligible. The new construction enables us to estimate a valid confidence region by empirical likelihood ratio. For the second one, we propose a test statistic as the maximum of the marginal empirical likelihood ratios to quantify data evidence against the model specification. Our theory establishes the validity of the proposed empirical likelihood approaches, accommodating over-identification and exponentially growing data dimensionality. The numerical studies demonstrate promising performance and potential practical benefits of the new methods.
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called data cloning for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا