ﻻ يوجد ملخص باللغة العربية
We consider a discrete time financial market with proportional transaction cost under model uncertainty, and study a super-replication problem. We recover the duality results that are well known in the classical dominated context. Our key argument consists in using a randomization technique together with the minimax theorem to convert the initial problem to a frictionless problem set on an enlarged space. This allows us to appeal to the techniques and results of Bouchard and Nutz (2015) to obtain the duality result.
We analyze the optimal dividend payment problem in the dual model under constant transaction costs. We show, for a general spectrally positive L{e}vy process, an optimal strategy is given by a $(c_1,c_2)$-policy that brings the surplus process down t
We employ perturbation analysis technique to study multi-asset portfolio optimisation with transaction cost. We allow for correlations in risky assets and obtain optimal trading methods for general utility functions. Our analytical results are suppor
Electronic platform has been increasingly popular for the execution of large orders among asset managers dealing desks. Properly monitoring each individual trade by the appropriate Transaction Cost Analysis (TCA) is the first key step towards this el
We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains $C_i$ ($i=1,2,dots$) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proporti
In this work we investigate an optimal closure problem under Knightian uncertainty. We obtain the value function and an optimal control as the minimal (super-)solution of a second order BSDE with monotone generator and with a singular terminal condition.