ترغب بنشر مسار تعليمي؟ اضغط هنا

A Locally Adapting Technique for Boundary Detection using Image Segmentation

99   0   0.0 ( 0 )
 نشر من قبل Marylesa Howard
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Rapid growth in the field of quantitative digital image analysis is paving the way for researchers to make precise measurements about objects in an image. To compute quantities from the image such as the density of compressed materials or the velocity of a shockwave, we must determine object boundaries. Images containing regions that each have a spatial trend in intensity are of particular interest. We present a supervised image segmentation method that incorporates spatial information to locate boundaries between regions with overlapping intensity histograms. The segmentation of a pixel is determined by comparing its intensity to distributions from local, nearby pixel intensities. Because of the statistical nature of the algorithm, we use maximum likelihood estimation theory to quantify uncertainty about each boundary. We demonstrate the success of this algorithm on a radiograph of a multicomponent cylinder and on an optical image of a laser-induced shockwave, and we provide final boundary locations with associated bands of uncertainty.



قيم البحث

اقرأ أيضاً

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled and unseen target domain, which is usually trained on data from both domains. Access to the source domain data at the adaptation stag e, however, is often limited, due to data storage or privacy issues. To alleviate this, in this work, we target source free UDA for segmentation, and propose to adapt an ``off-the-shelf segmentation model pre-trained in the source domain to the target domain, with an adaptive batch-wise normalization statistics adaptation framework. Specifically, the domain-specific low-order batch statistics, i.e., mean and variance, are gradually adapted with an exponential momentum decay scheme, while the consistency of domain shareable high-order batch statistics, i.e., scaling and shifting parameters, is explicitly enforced by our optimization objective. The transferability of each channel is adaptively measured first from which to balance the contribution of each channel. Moreover, the proposed source free UDA framework is orthogonal to unsupervised learning methods, e.g., self-entropy minimization, which can thus be simply added on top of our framework. Extensive experiments on the BraTS 2018 database show that our source free UDA framework outperformed existing source-relaxed UDA methods for the cross-subtype UDA segmentation task and yielded comparable results for the cross-modality UDA segmentation task, compared with a supervised UDA methods with the source data.
This paper presents a novel task together with a new benchmark for detecting generic, taxonomy-free event boundaries that segment a whole video into chunks. Conventional work in temporal video segmentation and action detection focuses on localizing p re-defined action categories and thus does not scale to generic videos. Cognitive Science has known since last century that humans consistently segment videos into meaningful temporal chunks. This segmentation happens naturally, without pre-defined event categories and without being explicitly asked to do so. Here, we repeat these cognitive experiments on mainstream CV datasets; with our novel annotation guideline which addresses the complexities of taxonomy-free event boundary annotation, we introduce the task of Generic Event Boundary Detection (GEBD) and the new benchmark Kinetics-GEBD. Our Kinetics-GEBD has the largest number of boundaries (e.g. 32 of ActivityNet, 8 of EPIC-Kitchens-100) which are in-the-wild, taxonomy-free, cover generic event change, and respect human perception diversity. We view GEBD as an important stepping stone towards understanding the video as a whole, and believe it has been previously neglected due to a lack of proper task definition and annotations. Through experiment and human study we demonstrate the value of the annotations. Further, we benchmark supervised and un-supervised GEBD approaches on the TAPOS dataset and our Kinetics-GEBD. We release our annotations and baseline codes at CVPR21 LOVEU Challenge: https://sites.google.com/view/loveucvpr21.
The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net (no-new-Net), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.
We focus on an important yet challenging problem: using a 2D deep network to deal with 3D segmentation for medical image analysis. Existing approaches either applied multi-view planar (2D) networks or directly used volumetric (3D) networks for this p urpose, but both of them are not ideal: 2D networks cannot capture 3D contexts effectively, and 3D networks are both memory-consuming and less stable arguably due to the lack of pre-trained models. In this paper, we bridge the gap between 2D and 3D using a novel approach named Elastic Boundary Projection (EBP). The key observation is that, although the object is a 3D volume, what we really need in segmentation is to find its boundary which is a 2D surface. Therefore, we place a number of pivot points in the 3D space, and for each pivot, we determine its distance to the object boundary along a dense set of directions. This creates an elastic shell around each pivot which is initialized as a perfect sphere. We train a 2D deep network to determine whether each ending point falls within the object, and gradually adjust the shell so that it gradually converges to the actual shape of the boundary and thus achieves the goal of segmentation. EBP allows boundary-based segmentation without cutting a 3D volume into slices or patches, which stands out from conventional 2D and 3D approaches. EBP achieves promising accuracy in abdominal organ segmentation. Our code has been open-sourced https://github.com/twni2016/Elastic-Boundary-Projection.
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes. Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary. From this perspective, we propose textbf{Boundary Squeeze} module: a novel and efficient module that squeezes the object boundary from both inner and outer directions which leads to precise mask representation. To generate such squeezed representation, we propose a new bidirectionally flow-based warping process and design specific loss signals to supervise the learning process. Boundary Squeeze Module can be easily applied to both instance and semantic segmentation tasks as a plug-and-play module by building on top of existing models. We show that our simple yet effective design can lead to high qualitative results on several different datasets and we also provide several different metrics on boundary to prove the effectiveness over previous work. Moreover, the proposed module is light-weighted and thus has potential for practical usage. Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting. Code and model will be available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا