ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic Boundary Projection for 3D Medical Image Segmentation

275   0   0.0 ( 0 )
 نشر من قبل Tianwei Ni
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We focus on an important yet challenging problem: using a 2D deep network to deal with 3D segmentation for medical image analysis. Existing approaches either applied multi-view planar (2D) networks or directly used volumetric (3D) networks for this purpose, but both of them are not ideal: 2D networks cannot capture 3D contexts effectively, and 3D networks are both memory-consuming and less stable arguably due to the lack of pre-trained models. In this paper, we bridge the gap between 2D and 3D using a novel approach named Elastic Boundary Projection (EBP). The key observation is that, although the object is a 3D volume, what we really need in segmentation is to find its boundary which is a 2D surface. Therefore, we place a number of pivot points in the 3D space, and for each pivot, we determine its distance to the object boundary along a dense set of directions. This creates an elastic shell around each pivot which is initialized as a perfect sphere. We train a 2D deep network to determine whether each ending point falls within the object, and gradually adjust the shell so that it gradually converges to the actual shape of the boundary and thus achieves the goal of segmentation. EBP allows boundary-based segmentation without cutting a 3D volume into slices or patches, which stands out from conventional 2D and 3D approaches. EBP achieves promising accuracy in abdominal organ segmentation. Our code has been open-sourced https://github.com/twni2016/Elastic-Boundary-Projection.

قيم البحث

اقرأ أيضاً

There has been a debate in 3D medical image segmentation on whether to use 2D or 3D networks, where both pipelines have advantages and disadvantages. 2D methods enjoy a low inference time and greater transfer-ability while 3D methods are superior in performance for hard targets requiring contextual information. This paper investigates efficient 3D segmentation from another perspective, which uses 2D networks to mimic 3D segmentation. To compensate the lack of contextual information in 2D manner, we propose to thicken the 2D network inputs by feeding multiple slices as multiple channels into 2D networks and thus 3D contextual information is incorporated. We also put forward to use early-stage multiplexing and slice sensitive attention to solve the confusion problem of information loss which occurs when 2D networks face thickened inputs. With this design, we achieve a higher performance while maintaining a lower inference latency on a few abdominal organs from CT scans, in particular when the organ has a peculiar 3D shape and thus strongly requires contextual information, demonstrating our methods effectiveness and ability in capturing 3D information. We also point out that thickened 2D inputs pave a new method of 3D segmentation, and look forward to more efforts in this direction. Experiments on segmenting a few abdominal targets in particular blood vessels which require strong 3D contexts demonstrate the advantages of our approach.
Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range de pendencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
In this paper, we adopt 3D Convolutional Neural Networks to segment volumetric medical images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D tasks due to the l imited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarse-to-fine framework to effectively and efficiently tackle these challenges. The proposed 3D-based framework outperforms the 2D counterpart to a large margin since it can leverage the rich spatial infor- mation along all three axes. We conduct experiments on two datasets which include healthy and pathological pancreases respectively, and achieve the current state-of-the-art in terms of Dice-S{o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset, we outperform the previous best by an average of over 2%, and the worst case is improved by 7% to reach almost 70%, which indicates the reliability of our framework in clinical applications.
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation. The convolutional operations used in these networks, however, inevitably have limitations in modeling the long-range dependency due to th eir inductive bias of locality and weight sharing. Although Transformer was born to address this issue, it suffers from extreme computational and spatial complexities in processing high-resolution 3D feature maps. In this paper, we propose a novel framework that efficiently bridges a {bf Co}nvolutional neural network and a {bf Tr}ansformer {bf (CoTr)} for accurate 3D medical image segmentation. Under this framework, the CNN is constructed to extract feature representations and an efficient deformable Transformer (DeTrans) is built to model the long-range dependency on the extracted feature maps. Different from the vanilla Transformer which treats all image positions equally, our DeTrans pays attention only to a small set of key positions by introducing the deformable self-attention mechanism. Thus, the computational and spatial complexities of DeTrans have been greatly reduced, making it possible to process the multi-scale and high-resolution feature maps, which are usually of paramount importance for image segmentation. We conduct an extensive evaluation on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that covers 11 major human organs. The results indicate that our CoTr leads to a substantial performance improvement over other CNN-based, transformer-based, and hybrid methods on the 3D multi-organ segmentation task. Code is available at defUrlFont{rmsmallttfamily} url{https://github.com/YtongXie/CoTr}
363 - Yufan He , Dong Yang , Holger Roth 2021
Recently, neural architecture search (NAS) has been applied to automatically search high-performance networks for medical image segmentation. The NAS search space usually contains a network topology level (controlling connections among cells with dif ferent spatial scales) and a cell level (operations within each cell). Existing methods either require long searching time for large-scale 3D image datasets, or are limited to pre-defined topologies (such as U-shaped or single-path). In this work, we focus on three important aspects of NAS in 3D medical image segmentation: flexible multi-path network topology, high search efficiency, and budgeted GPU memory usage. A novel differentiable search framework is proposed to support fast gradient-based search within a highly flexible network topology search space. The discretization of the searched optimal continuous model in differentiable scheme may produce a sub-optimal final discrete model (discretization gap). Therefore, we propose a topology loss to alleviate this problem. In addition, the GPU memory usage for the searched 3D model is limited with budget constraints during search. Our Differentiable Network Topology Search scheme (DiNTS) is evaluated on the Medical Segmentation Decathlon (MSD) challenge, which contains ten challenging segmentation tasks. Our method achieves the state-of-the-art performance and the top ranking on the MSD challenge leaderboard.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا