ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep-learned Top Tagging with a Lorentz Layer

123   0   0.0 ( 0 )
 نشر من قبل Tilman Plehn
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new and highly efficient tagger for hadronically decaying top quarks, based on a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel machine learning setup and architecture it allows us to identify boosted top quarks not only from calorimeter towers, but also including tracking information. We show how the performance of our tagger compares with QCD-inspired and image-recognition approaches and find that it significantly increases the performance for strongly boosted top quarks.



قيم البحث

اقرأ أيضاً

Jet tagging has become an essential tool for new physics searches at the high-energy frontier. For jets that contain energetic charged leptons we introduce Feature Extended Supervised Tagging (FEST) which, in addition to jet substructure, considers t he features of the charged lepton within the jet. With this method we build dedicated taggers to discriminate among boosted $H to ell u q bar q$, $t to ell u b$, and QCD jets (with $ell$ an electron or muon). The taggers have an impressive performance, allowing for overall light jet rejection factors of $10^4-10^5$, for top quark / Higgs boson efficiencies of $0.5$. The taggers are also excellent in the discrimination of Higgs bosons from top quarks and vice versa, for example rejecting top quarks by factors of $100-300$ for Higgs boson efficiencies of $0.5$. We demonstrate the potential of these taggers to improve the sensitivity to new physics by using as example a search for a new $Z$ boson decaying into $Z H$, in the fully-hadronic final state.
75 - W. Cosyn , C. Weiss 2020
Background: DIS on the polarized deuteron with detection of a proton in the nuclear breakup region (spectator tagging) represents a unique method for extracting the neutron spin structure functions and studying nuclear modifications. The tagged proto n momentum controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. Such measurements could be performed with the future electron-ion collider (EIC) and forward proton detectors if deuteron beam polarization could be achieved. Purpose: Develop theoretical framework for polarized deuteron DIS with spectator tagging. Formulate procedures for neutron spin structure extraction. Methods: A covariant spin density matrix formalism is used to describe general deuteron polarization in collider experiments (vector/tensor, pure/mixed). Light-front (LF) quantum mechanics is employed to factorize nuclear and nucleonic structure in the DIS process. A 4-dimensional representation of LF spin structure is used to construct the polarized deuteron LF wave function and efficiently evaluate the spin sums. Free neutron structure is extracted using the impulse approximation and analyticity in the tagged proton momentum (pole extrapolation). Results: General expressions of the polarized tagged DIS observables in collider experiments. Analytic and numerical study of the polarized deuteron LF spectral function and nucleon momentum distributions. Practical procedures for neutron spin structure extraction from the tagged deuteron spin asymmetries. Conclusions: Spectator tagging provides new tools for precise neutron spin structure measurements. D-wave depolarization and nuclear binding effects can be eliminated through the tagged proton momentum dependence. The methods can be extended to tensor-polarized observables, spin-orbit effects, and diffractive processes.
We evaluate the phenomenological applicability of the dynamical grooming technique, introduced in [1], to boosted W and top tagging at LHC conditions. An extension of our method intended for multi-prong decays with an internal mass scale, such as the top quark decay, is presented. First, we tackle the reconstruction of the mass distribution of W and top jets quantifying the smearing due to pileup. When compared to state-of-the-art grooming algorithms like SoftDrop and its recursive version, dynamical grooming shows an enhanced resilience to background fluctuations. In addition, we asses the discriminating power of dynamical grooming to distinguish W (top) jets from QCD ones by performing a two-step analysis: introduce a cut on the groomed mass around the W (top) mass peak followed by a restriction on the N-subjettinnes ratio $tau_{21}$ ($tau_{32}$). For W jets, the out-of-the-box version of dynamical grooming, free of ad-hoc parameters, results into a comparable performance to SoftDrop. Regarding the top tagger efficiency, 3-prong dynamical grooming, in spite of its simplicity, presents better performance than SoftDrop and similar results to Recursive SoftDrop.
Background: Deep-inelastic scattering (DIS) on the deuteron with spectator nucleon tagging represents a unique method for extracting the free neutron structure functions and exploring the nuclear modifications of bound protons and neutrons. The detec tion of the spectator (with typical momenta $lesssim$ 100 MeV/c in the deuteron rest frame) controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. At the future electron-ion collider (EIC) such measurements will be performed using far-forward detectors. Purpose: Simulate deuteron DIS with proton or neutron tagging with the baseline EIC far-forward detector design. Quantify detector acceptance and resolution effects. Study feasibility of free nucleon structure extraction using pole extrapolation in the spectator momentum. Methods: DIS events with proton and neutron spectators are generated using the BeAGLE Monte Carlo generator. The spectator nucleon momentum is reconstructed including effects of detector acceptance and resolution. Pole extrapolation is performed under realistic conditions. The free nucleon structure extraction is validated by comparing with the input model. Results: Proton and neutron spectator detection is possible over the full transverse momentum range $0 < p_T < 100$ MeV/c needed for pole extrapolation. Resolution effects on the distributions before corrections are ~10% for proton and ~30 for neutron spectators. The overall accuracy of nucleon structure extraction is expected to be at the few-percent level. Conclusions: Free neutron structure extraction through proton tagging and pole extrapolation is feasible with the baseline EIC far-forward detector design. The corresponding extraction of free proton structure through neutron tagging provides a reference point for future studies of nuclear modifications.
One way to probe new physics beyond standard model is to check the correlation among higher dimension operators in effective field theory. We examine the strong correlation between the processes of $pprightarrow tHq$ and $pprightarrow tq$ which both depend on the same three operators. The correlation indicates that, according to the data of $pprightarrow tq$, $sigma_{tHq}=big[106.8 pm 64.8big]~{rm fb}$ which is far below the current upper limit $sigma_{tHq}leq 900~{rm fb}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا