ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep-inelastic electron-deuteron scattering with spectator nucleon tagging at the electron-ion collider. Extracting free nucleon structure

135   0   0.0 ( 0 )
 نشر من قبل Alexander Jentsch
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Deep-inelastic scattering (DIS) on the deuteron with spectator nucleon tagging represents a unique method for extracting the free neutron structure functions and exploring the nuclear modifications of bound protons and neutrons. The detection of the spectator (with typical momenta $lesssim$ 100 MeV/c in the deuteron rest frame) controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. At the future electron-ion collider (EIC) such measurements will be performed using far-forward detectors. Purpose: Simulate deuteron DIS with proton or neutron tagging with the baseline EIC far-forward detector design. Quantify detector acceptance and resolution effects. Study feasibility of free nucleon structure extraction using pole extrapolation in the spectator momentum. Methods: DIS events with proton and neutron spectators are generated using the BeAGLE Monte Carlo generator. The spectator nucleon momentum is reconstructed including effects of detector acceptance and resolution. Pole extrapolation is performed under realistic conditions. The free nucleon structure extraction is validated by comparing with the input model. Results: Proton and neutron spectator detection is possible over the full transverse momentum range $0 < p_T < 100$ MeV/c needed for pole extrapolation. Resolution effects on the distributions before corrections are ~10% for proton and ~30 for neutron spectators. The overall accuracy of nucleon structure extraction is expected to be at the few-percent level. Conclusions: Free neutron structure extraction through proton tagging and pole extrapolation is feasible with the baseline EIC far-forward detector design. The corresponding extraction of free proton structure through neutron tagging provides a reference point for future studies of nuclear modifications.



قيم البحث

اقرأ أيضاً

75 - W. Cosyn , C. Weiss 2020
Background: DIS on the polarized deuteron with detection of a proton in the nuclear breakup region (spectator tagging) represents a unique method for extracting the neutron spin structure functions and studying nuclear modifications. The tagged proto n momentum controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. Such measurements could be performed with the future electron-ion collider (EIC) and forward proton detectors if deuteron beam polarization could be achieved. Purpose: Develop theoretical framework for polarized deuteron DIS with spectator tagging. Formulate procedures for neutron spin structure extraction. Methods: A covariant spin density matrix formalism is used to describe general deuteron polarization in collider experiments (vector/tensor, pure/mixed). Light-front (LF) quantum mechanics is employed to factorize nuclear and nucleonic structure in the DIS process. A 4-dimensional representation of LF spin structure is used to construct the polarized deuteron LF wave function and efficiently evaluate the spin sums. Free neutron structure is extracted using the impulse approximation and analyticity in the tagged proton momentum (pole extrapolation). Results: General expressions of the polarized tagged DIS observables in collider experiments. Analytic and numerical study of the polarized deuteron LF spectral function and nucleon momentum distributions. Practical procedures for neutron spin structure extraction from the tagged deuteron spin asymmetries. Conclusions: Spectator tagging provides new tools for precise neutron spin structure measurements. D-wave depolarization and nuclear binding effects can be eliminated through the tagged proton momentum dependence. The methods can be extended to tensor-polarized observables, spin-orbit effects, and diffractive processes.
Understanding how sea quarks behave inside a nucleon is one of the most important physics goals of the proposed Electron-Ion Collider in China (EicC), which is designed to have 3.5 GeV polarized electron beam (80% polarization) colliding with 20 GeV polarized proton beam (70% polarization) at instantaneous luminosity of $2 times 10^{33} {rm cm}^{-2} {rm s}^{-1}$. A specific topic at EicC is to understand the polarization of individual quarks inside a longitudinally polarized nucleon. The potential of various future EicC data, including the inclusive and semi-inclusive deep inelastic scattering data from both doubly polarized electron-proton and electron-$^3{rm He}$ collisions, to reduce the uncertainties of parton helicity distributions is explored at the next-to-leading order in QCD, using the Error PDF Updating Method Package ({sc ePump}) which is based on the Hessian profiling method. We show that the semi-inclusive data are well able to provide good separation between flavour distributions, and to constrain their uncertainties in the $x>0.005$ region, especially when electron-$^3{rm He}$ collisions, acting as effective electron-neutron collisions, are taken into account. To enable this study, we have generated a Hessian representation of the DSSV14 set of PDF replicas, named DSSV14H PDFs.
The spin structure function of the neutron is traditionally determined by measuring the spin asymmetry of inclusive electron deep inelastic scattering (DIS) off polarized3He nuclei. In such experiments, nuclear effects can lead to large model depende ncies in the interpretation of experimental data. Here we study the feasibility of suppressing such model dependencies by tagging both spectator protons in the process of DIS off neutrons in3He at the forthcoming Electron-Ion Collider (EIC). This allows reconstructing the momentum of the struck neutron to ensure it was nearly at rest in the initial state, thereby reducing sensitivity to nuclear corrections, and suppress contributions from electron DIS off protonsin3He. Using realistic accelerator and detector configurations, we find that the EIC can probe the neutron spin structure from xB of 0.003 to 0.651. We further find that the double spectator tagging method results in reduced uncertainties bya factor of 4 on the extracted neutron spin asymmetries over all kinematics, and by a factor of 10 in the low-xB region,thereby providing valuable insight to the spin and flavor structure of nucleons
The Electron-Ion Collider (EIC) at Brookhaven National Laboratory will be a precision Quantum Chromodynamics machine that will enable a vast physics program with electron+proton/ion collisions across a broad center-of-mass range. Measurements of hard probes such as heavy flavor in deep inelastic scatterings will be an essential component to the EIC physics program and are one of the detector R&D driving aspects. In this paper we study the projected statistical precision of open charm hadron production through exclusive hadronic channel reconstruction with a silicon detector concept currently being developed using a PYTHIA-based simulation. We further study the impact of possible intrinsic charm in the proton on projected data, and estimate the constraint on the nuclear gluon parton distribution function (PDF) from the charm structure functions $F_{2}^{coverline{c}}$ in $e$+Au collisions using a Bayesian PDF re-weighting technique. Our studies show the EIC will be capable delivering an unprecedented measurement of charm hadron production across a broad kinematic region and will provide strong constraints to both intrinsic charm and nuclear gluon PDFs.
We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, $eprightarrow e+text{jet}+X$, as well as the associated jet fragmentation process, $eprightarrow e+ text{jet} (h)+X$, in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا