ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-field edge fringes at sharp material boundaries

103   0   0.0 ( 0 )
 نشر من قبل Viktoriia Babicheva
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the formation of near-field fringes when sharp edges of materials are imaged using scattering-type scanning near-field optical microscope (s-SNOM). Materials we have investigated include dielectrics, metals, near-perfect conductor, and those that possess anisotropic permittivity and hyperbolic dispersion. For our theoretical analysis, we use a technique that combines full-wave numerical simulations of tip-sample near-field interaction and signal demodulation at higher orders akin to what is done in typical s-SNOM experiments. Unlike previous tip-sample interaction near-field models, our advanced technique allows simulation of the realistic tip and sample structure. Our analysis clarifies edge imaging of recently emerged layered materials such as hexagonal boron nitride and transition metal dichalcogenides (in particular, molybdenum disulfide), as well as traditional plasmonic materials such as gold. Hexagonal boron nitride is studied at several wavelengths, including the wavelength where it possesses excitation of phonon-polaritons and hyperbolic dispersion. Based on our results of s-SNOM imaging in different demodulation orders, we specify resonant and non-resonant types of edges and describe the edge fringes for each case. We clarify near-field edge-fringe formation at material sharp boundaries, both outside bright fringes and the low-contrast region at the edge, and elaborate on the necessity of separating them from propagating waves on the surface of polaritonic materials.


قيم البحث

اقرأ أيضاً

We measure fast carrier decay rates (6 ps) in GaAs photonic crystal cavities with resonances near the GaAs bandgap energy at room temperature using a pump-probe measurement. Carriers generated via photoexcitation using an above-band femtosecond pulse cause a substantial blue-shift in the cavity peak. The experimental results are compared to theoretical models based on free carrier effects near the GaAs band edge. The probe transmission is modified for an estimated above-band pump energy of 4.2 fJ absorbed in the GaAs slab.
We reconsider the problem of bounding higher derivative couplings in consistent weakly coupled gravitational theories, starting from general assumptions about analyticity and Regge growth of the S-matrix. Higher derivative couplings are expected to b e of order one in the units of the UV cutoff. Our approach justifies this expectation and allows to prove precise bounds on the order one coefficients. Our main tool are dispersive sum rules for the S-matrix. We overcome the difficulties presented by the graviton pole by measuring couplings at small impact parameter, rather than in the forward limit. We illustrate the method in theories containing a massless scalar coupled to gravity, and in theories with maximal supersymmetry.
We theoretically study resonance responses of flat surfaces and sharp edges of the nanostructures that support excitations of phonon-polaritons in mid-infrared range. We focus on two materials: silicon carbide that has a nearly isotropic permittivity and hexagonal boron nitride that has a strong anisotropy and spectral band with hyperbolic dispersion. We aim to predict scattering-type near-field optical microscope (s-SNOM) response and develop a modeling approach that adequately describes the resonant behavior of the nanostructure with phonon-polaritons. The previously employed technique assumes dipole scattering from the tip and allows calculating s-SNOM signal in different demodulation orders by modeling full structure, any tip positions, and vertical scans, which works well for the structures with only one hot spot, e.g. flat surfaces. In the structures of complex shapes, hot-spot places are unknown, and analysis of light absorption in the whole apex is the best way to account for all hot spots and field enhancement. We show that calculation of demodulation orders of light absorption in the tip is an alternative way to predict s-SNOM signal, and it is preferred for the structures of complex shapes with strong resonances, where dipole approximation of the tip is not valid.
Dynamics of femtosecond pulses with the telecom carrier wavelength is investigated numerically in a subwavelength layer of an indium tin oxide (ITO) epsilon-near-zero (ENZ) material with high dispersion and high nonlinearity. Due to the subwavelength thickness of the ITO ENZ material, and the fact that the pulses propagation time is shorter than its temporal width, multiple reflections give rise to self-interaction in both spectral and temporal domains, especially at wavelengths longer than the ENZ point, at which the reflections are significantly stronger. A larger absolute value of the pulses chirp strongly affects the self-interaction by redistributing energy between wavelengths, while the sign of the chirp affects the interaction in the temporal domain. It is also found that, when two identical pulses are launched simultaneously from both ends, a subwavelength counterpart of a standing-wave state can be established. It shows robust energy localization in the middle of the sample, in terms of both the spectral and temporal intensity distributions.
Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale resolved Infrared (IR) and Terahertz (THz) imaging, and thus has manifold applications ranging from materials to biosciences. However, a quantitatively accurate unde rstanding of image contrast formation at materials boundaries, and thus spatial resolution is a surprisingly unexplored terrain. Here we introduce the write/read head of a commercial hard disk drive (HDD) as a most suitable test sample for fundamental studies, given its well20 defined sharp material boundaries perpendicular to its ultra-smooth surface. We obtainunprecedented and unexpected insights into the s-SNOM image formation process, free of topography-induced artifacts that often mask and artificially modify the pure near-field optical contrast. Across metal-dielectric boundaries, we observe non-point-symmetric line profiles for both IR and THz illumination, which are fully corroborated by numericalsimulations. We explain our findings by a sample-dependent confinement and screening of the near fields at the tip apex, which will be of crucial importance for an accurate understanding and proper interpretation of high-resolution s-SNOM images of nanocomposite materials. We also demonstrate that with ultra-sharp tungsten tips the apparent width (and thus resolution) of sharp material boundaries can be reduced to about 5 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا