ﻻ يوجد ملخص باللغة العربية
Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale resolved Infrared (IR) and Terahertz (THz) imaging, and thus has manifold applications ranging from materials to biosciences. However, a quantitatively accurate understanding of image contrast formation at materials boundaries, and thus spatial resolution is a surprisingly unexplored terrain. Here we introduce the write/read head of a commercial hard disk drive (HDD) as a most suitable test sample for fundamental studies, given its well20 defined sharp material boundaries perpendicular to its ultra-smooth surface. We obtainunprecedented and unexpected insights into the s-SNOM image formation process, free of topography-induced artifacts that often mask and artificially modify the pure near-field optical contrast. Across metal-dielectric boundaries, we observe non-point-symmetric line profiles for both IR and THz illumination, which are fully corroborated by numericalsimulations. We explain our findings by a sample-dependent confinement and screening of the near fields at the tip apex, which will be of crucial importance for an accurate understanding and proper interpretation of high-resolution s-SNOM images of nanocomposite materials. We also demonstrate that with ultra-sharp tungsten tips the apparent width (and thus resolution) of sharp material boundaries can be reduced to about 5 nm.
We report a very high precision interferometric sensor with resolution up to ~{lambda}/1024, exploiting hollow photonic bandgap waveguide-based geometry for the first time. Here sensing has been measured by a complete switching in the direction of th
Silicon waveguides have enabled large-scale manipulation and processing of near-infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies would further increase the functionality of silicon as a photonics pla
Scattering-type scanning near-field microscopy (s-SNOM) at terahertz (THz) frequencies could become a highly valuable tool for studying a variety of phenomena of both fundamental and applied interest, including mobile carrier excitations or phase tra
Developing a chip-based super-resolution imaging technique with large field-of-view (FOV), deep subwavelength resolution, and compatibility for both fluorescent and non-fluorescent samples is desired for material science, biomedicine, and life resear
Despite recent advances in active metaoptics, wide dynamic range combined with high-speed reconfigurable solutions is still elusive. Phase-change materials (PCMs) offer a compelling platform for metasurface optical elements, owing to the large index