ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of fusion-evaporation cross-section calculations

82   0   0.0 ( 0 )
 نشر من قبل Bertram Blank
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

قيم البحث

اقرأ أيضاً

Evaporation residue cross sections have been measured with neutron-rich radioactive $^{132}$Sn beams on $^{64}$Ni in the vicinity of the Coulomb barrier. The average beam intensity was $2times 10^{4}$ particles per second and the smallest cross secti on measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.
Final results from an exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross sections are analyzed using a potential model of 8B and first-order perturbation theory. The dedu ced astrophysical S_17 factors are in good agreement with the most recent direct 7Be(p,gamma)8B measurements and follow closely the energy dependence predicted by the cluster-model description of 8B by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +- 1.2 (syst) eV b.
73 - X. Yan , K. Allada , K. Aniol 2016
The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{prime}pi^{pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9,$GeV $e^-$ beam on a $^3$H e target. The experiment focuses on the valence quark region, covering a kinematic range $0.12 < x_{bj} < 0.45$, $1 < Q^2 < 4 , textrm{(GeV/c)}^2$, $0.45 < z_{h} < 0.65$, and $0.05 < P_t < 0.55 , textrm{GeV/c}$. The extracted SIDIS differential cross sections of $pi^{pm}$ production are compared with existing phenomenological models while the $^3$He nucleus approximated as two protons and one neutron in a plane wave picture, in multi-dimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero.
An exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV allowed to study the angular correlations of the breakup particles. These correlations demonstrate clearly that E1 multipolarity dominates and that E2 multipolarity can be neglected. By using a simple single-particle model for 8B and treating the breakup in first-order perturbation theory, we extract a zero-energy S factor of S-(17)(0) = 18.6 +- 1.2 +- 1.0 eV b.
The cross section of the $^{23}$Na($n, gamma$)$^{24}$Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at $kT=5.1$ and 25 keV produced via the $^{18}$O($p, n$)$^{18}$F and $^{7}$Li($p, n$)$^{7}$Be reactions, respectively. The derived capture cross sections $langlesigmarangle_{rm kT=5 keV}=9.1pm0.3$ mb and $langlesigmarangle_{rm kT=25 keV}=2.03 pm 0.05$ mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first $^{23}$Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of $s$-process nucleosynthesis are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا