ترغب بنشر مسار تعليمي؟ اضغط هنا

Time- and space-resolved selective multi-pair creation

67   0   0.0 ( 0 )
 نشر من قبل Heiko Bauke
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The simultaneous creation of multiple electron-positron pairs by localized strong electric fields is studied by utilizing a time- and space-resolved quantum field theory approach. It is demonstrated that the number of simultaneously created pairs equals the number of the potentials supercritical quasibound states in the Dirac sea. This means it can be controlled by tuning the potential parameters. Furthermore, the energy of the created particles corresponds to the energy of the supercritical quasibound states. The simultaneously created electrons and positrons are statistically correlated, which is reflected in the spatial distribution and the momentum distribution of these particles and antiparticles.



قيم البحث

اقرأ أيضاً

Conversion of vacuum fluctuations into real particles was first predicted by L. Parker considering an expanding universe, followed in S. Hawkings work on black hole radiation. Since their experimental observation is challenging, analogue systems have gained attention in the verification of this concept. Here we propose an experimental set-up consisting of two adjacent piezoelectric semiconducting layers, one of them carrying dynamic quantum dots (DQDs), and the other being p-doped with an attached gate on top, which introduces a space-dependent layer conductivity. The propagation of surface acoustic waves (SAWs) on the latter layer is governed by a wave equation with an effective metric. In the frame of the DQDs, this space- and time-dependent metric possesses a sonic horizon for SAWs and resembles that of a two dimensional non-rotating and uncharged black hole to some extent. The non-thermal steady state of the DQD spin indicates particle creation in form of piezophonons.
113 - Q. Z. Lv , Heiko Bauke , Q. Su 2015
Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing sp ecific external field configurations, two bound states can become pseudodegenerate, which is commonly referred to as the Schiff-Snyder-Weinberg effect. These pseudodegenerate bound states, which have complex energy eigenvalues, are related to the pseudo-Hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudodegenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.
377 - D. D. Su , Y. T. Li , Q. Z. Lv 2019
Electron-positron pair production from vacuum is studied in combined background fields, a binding electric potential well and a laser field. The production process is triggered by the interactions between the bound states in the potential well and th e continuum states in the Dirac sea. By tuning the binding potential well, the pair production can be strongly affected by the locality of the bound states. The narrower bound states in position space are more efficient for pair production. This is in contrast to what is commonly expected that the wider extended bound states have larger region to interact with external fields and would thus create more particles. This surprise can be explained as the more localized bound states have a much wider extension in the momentum space, which can enhance the bound-continuum interactions in the creation process. This enhancement manifests itself in both perturbative and non-perturbative production regimes.
In NMR (Nuclear Magnetic Resonance) quantum computation, the selective control of multiple homonuclear spins is usually slow because their resonance frequencies are very close to each other. To quickly implement controls against decoherence effects, this paper presents an efficient numerical algorithm fordesigning minimum-time local transformations in two homonuclear spins. We obtain an accurate minimum-time estimation via geometric analysis on the two-timescale decomposition of the dynamics. Such estimation narrows down the range of search for the minimum-time control with a gradient-type optimization algorithm. Numerical simulations show that this method can remarkably reduce the search efforts, especially when the frequency difference is very small and the control field is high. Its effectiveness is further demonstrated by NMR experiments with two homunuclear carbon spins in a trichloroethylene (C2H1Cl3) sample system.
We experimentally demonstrate a mode-selective quantum frequency converter over a compound spatio-temporal Hilbert space. We show that our method can achieve high-extinction for high-dimensional quantum state tomography by selectively upconverting th e signal modes with a modulated and delayed pump. By preparing the pump in optimized modes through adaptive feedback control, selective frequency conversion is demonstrated with up to 30 dB extinction. The simultaneous operations over high-dimensional degrees of freedom in both spatial and temporal domains can serve as a viable resource for photon-efficient quantum communications and computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا