ﻻ يوجد ملخص باللغة العربية
The simultaneous creation of multiple electron-positron pairs by localized strong electric fields is studied by utilizing a time- and space-resolved quantum field theory approach. It is demonstrated that the number of simultaneously created pairs equals the number of the potentials supercritical quasibound states in the Dirac sea. This means it can be controlled by tuning the potential parameters. Furthermore, the energy of the created particles corresponds to the energy of the supercritical quasibound states. The simultaneously created electrons and positrons are statistically correlated, which is reflected in the spatial distribution and the momentum distribution of these particles and antiparticles.
Conversion of vacuum fluctuations into real particles was first predicted by L. Parker considering an expanding universe, followed in S. Hawkings work on black hole radiation. Since their experimental observation is challenging, analogue systems have
Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing sp
Electron-positron pair production from vacuum is studied in combined background fields, a binding electric potential well and a laser field. The production process is triggered by the interactions between the bound states in the potential well and th
In NMR (Nuclear Magnetic Resonance) quantum computation, the selective control of multiple homonuclear spins is usually slow because their resonance frequencies are very close to each other. To quickly implement controls against decoherence effects,
We experimentally demonstrate a mode-selective quantum frequency converter over a compound spatio-temporal Hilbert space. We show that our method can achieve high-extinction for high-dimensional quantum state tomography by selectively upconverting th