ترغب بنشر مسار تعليمي؟ اضغط هنا

Cascaded Scene Flow Prediction using Semantic Segmentation

107   0   0.0 ( 0 )
 نشر من قبل Zhile Ren
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given two consecutive frames from a pair of stereo cameras, 3D scene flow methods simultaneously estimate the 3D geometry and motion of the observed scene. Many existing approaches use superpixels for regularization, but may predict inconsistent shapes and motions inside rigidly moving objects. We instead assume that scenes consist of foreground objects rigidly moving in front of a static background, and use semantic cues to produce pixel-accurate scene flow estimates. Our cascaded classification framework accurately models 3D scenes by iteratively refining semantic segmentation masks, stereo correspondences, 3D rigid motion estimates, and optical flow fields. We evaluate our method on the challenging KITTI autonomous driving benchmark, and show that accounting for the motion of segmented vehicles leads to state-of-the-art performance.



قيم البحث

اقرأ أيضاً

Semantic scene segmentation plays a critical role in a wide range of robotics applications, e.g., autonomous navigation. These applications are accompanied by specific computational restrictions, e.g., operation on low-power GPUs, at sufficient speed , and also for high-resolution input. Existing state-of-the-art segmentation models provide evaluation results under different setups and mainly considering high-power GPUs. In this paper, we investigate the behavior of the most successful semantic scene segmentation models, in terms of deployment (inference) speed, under various setups (GPUs, input sizes, etc.) in the context of robotics applications. The target of this work is to provide a comparative study of current state-of-the-art segmentation models so as to select the most compliant with the robotics applications requirements.
Real-time semantic segmentation has received considerable attention due to growing demands in many practical applications, such as autonomous vehicles, robotics, etc. Existing real-time segmentation approaches often utilize feature fusion to improve segmentation accuracy. However, they fail to fully consider the feature information at different resolutions and the receptive fields of the networks are relatively limited, thereby compromising the performance. To tackle this problem, we propose a light Cascaded Selective Resolution Network (CSRNet) to improve the performance of real-time segmentation through multiple context information embedding and enhanced feature aggregation. The proposed network builds a three-stage segmentation system, which integrates feature information from low resolution to high resolution and achieves feature refinement progressively. CSRNet contains two critical modules: the Shorted Pyramid Fusion Module (SPFM) and the Selective Resolution Module (SRM). The SPFM is a computationally efficient module to incorporate the global context information and significantly enlarge the receptive field at each stage. The SRM is designed to fuse multi-resolution feature maps with various receptive fields, which assigns soft channel attentions across the feature maps and helps to remedy the problem caused by multi-scale objects. Comprehensive experiments on two well-known datasets demonstrate that the proposed CSRNet effectively improves the performance for real-time segmentation.
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
In this work we investigate the problem of road scene semantic segmentation using Deconvolutional Networks (DNs). Several constraints limit the practical performance of DNs in this context: firstly, the paucity of existing pixel-wise labelled trainin g data, and secondly, the memory constraints of embedded hardware, which rule out the practical use of state-of-the-art DN architectures such as fully convolutional networks (FCN). To address the first constraint, we introduce a Multi-Domain Road Scene Semantic Segmentation (MDRS3) dataset, aggregating data from six existing densely and sparsely labelled datasets for training our models, and two existing, separate datasets for testing their generalisation performance. We show that, while MDRS3 offers a greater volume and variety of data, end-to-end training of a memory efficient DN does not yield satisfactory performance. We propose a new training strategy to overcome this, based on (i) the creation of a best-possible source network (S-Net) from the aggregated data, ignoring time and memory constraints; and (ii) the transfer of knowledge from S-Net to the memory-efficient target network (T-Net). We evaluate different techniques for S-Net creation and T-Net transferral, and demonstrate that training a constrained deconvolutional network in this manner can unlock better performance than existing training approaches. Specifically, we show that a target network can be trained to achieve improved accuracy versus an FCN despite using less than 1% of the memory. We believe that our approach can be useful beyond automotive scenarios where labelled data is similarly scarce or fragmented and where practical constraints exist on the desired model size. We make available our network models and aggregated multi-domain dataset for reproducibility.
Practical autonomous driving systems face two crucial challenges: memory constraints and domain gap issues. In this paper, we present a novel approach to learn domain adaptive knowledge in models with limited memory, thus bestowing the model with the ability to deal with these issues in a comprehensive manner. We term this as Domain Adaptive Knowledge Distillation and address the same in the context of unsupervised domain-adaptive semantic segmentation by proposing a multi-level distillation strategy to effectively distil knowledge at different levels. Further, we introduce a novel cross entropy loss that leverages pseudo labels from the teacher. These pseudo teacher labels play a multifaceted role towards: (i) knowledge distillation from the teacher network to the student network & (ii) serving as a proxy for the ground truth for target domain images, where the problem is completely unsupervised. We introduce four paradigms for distilling domain adaptive knowledge and carry out extensive experiments and ablation studies on real-to-real as well as synthetic-to-real scenarios. Our experiments demonstrate the profound success of our proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا