ترغب بنشر مسار تعليمي؟ اضغط هنا

Training Constrained Deconvolutional Networks for Road Scene Semantic Segmentation

226   0   0.0 ( 0 )
 نشر من قبل German Ros
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we investigate the problem of road scene semantic segmentation using Deconvolutional Networks (DNs). Several constraints limit the practical performance of DNs in this context: firstly, the paucity of existing pixel-wise labelled training data, and secondly, the memory constraints of embedded hardware, which rule out the practical use of state-of-the-art DN architectures such as fully convolutional networks (FCN). To address the first constraint, we introduce a Multi-Domain Road Scene Semantic Segmentation (MDRS3) dataset, aggregating data from six existing densely and sparsely labelled datasets for training our models, and two existing, separate datasets for testing their generalisation performance. We show that, while MDRS3 offers a greater volume and variety of data, end-to-end training of a memory efficient DN does not yield satisfactory performance. We propose a new training strategy to overcome this, based on (i) the creation of a best-possible source network (S-Net) from the aggregated data, ignoring time and memory constraints; and (ii) the transfer of knowledge from S-Net to the memory-efficient target network (T-Net). We evaluate different techniques for S-Net creation and T-Net transferral, and demonstrate that training a constrained deconvolutional network in this manner can unlock better performance than existing training approaches. Specifically, we show that a target network can be trained to achieve improved accuracy versus an FCN despite using less than 1% of the memory. We believe that our approach can be useful beyond automotive scenarios where labelled data is similarly scarce or fragmented and where practical constraints exist on the desired model size. We make available our network models and aggregated multi-domain dataset for reproducibility.



قيم البحث

اقرأ أيضاً

Semantic scene segmentation plays a critical role in a wide range of robotics applications, e.g., autonomous navigation. These applications are accompanied by specific computational restrictions, e.g., operation on low-power GPUs, at sufficient speed , and also for high-resolution input. Existing state-of-the-art segmentation models provide evaluation results under different setups and mainly considering high-power GPUs. In this paper, we investigate the behavior of the most successful semantic scene segmentation models, in terms of deployment (inference) speed, under various setups (GPUs, input sizes, etc.) in the context of robotics applications. The target of this work is to provide a comparative study of current state-of-the-art segmentation models so as to select the most compliant with the robotics applications requirements.
General purpose semantic segmentation relies on a backbone CNN network to extract discriminative features that help classify each image pixel into a seen object class (ie., the object classes available during training) or a background class. Zero-sho t semantic segmentation is a challenging task that requires a computer vision model to identify image pixels belonging to an object class which it has never seen before. Equipping a general purpose semantic segmentation model to separate image pixels of unseen classes from the background remains an open challenge. Some recent models have approached this problem by fine-tuning the final pixel classification layer of a semantic segmentation model for a Zero-Shot setting, but struggle to learn discriminative features due to the lack of supervision. We propose a recursive training scheme to supervise the retraining of a semantic segmentation model for a zero-shot setting using a pseudo-feature representation. To this end, we propose a Zero-Shot Maximum Mean Discrepancy (ZS-MMD) loss that weighs high confidence outputs of the pixel classification layer as a pseudo-feature representation, and feeds it back to the generator. By closing-the-loop on the generator end, we provide supervision during retraining that in turn helps the model learn a more discriminative feature representation for unseen classes. We show that using our recursive training and ZS-MMD loss, our proposed model achieves state-of-the-art performance on the Pascal-VOC 2012 dataset and Pascal-Context dataset.
Practical autonomous driving systems face two crucial challenges: memory constraints and domain gap issues. In this paper, we present a novel approach to learn domain adaptive knowledge in models with limited memory, thus bestowing the model with the ability to deal with these issues in a comprehensive manner. We term this as Domain Adaptive Knowledge Distillation and address the same in the context of unsupervised domain-adaptive semantic segmentation by proposing a multi-level distillation strategy to effectively distil knowledge at different levels. Further, we introduce a novel cross entropy loss that leverages pseudo labels from the teacher. These pseudo teacher labels play a multifaceted role towards: (i) knowledge distillation from the teacher network to the student network & (ii) serving as a proxy for the ground truth for target domain images, where the problem is completely unsupervised. We introduce four paradigms for distilling domain adaptive knowledge and carry out extensive experiments and ablation studies on real-to-real as well as synthetic-to-real scenarios. Our experiments demonstrate the profound success of our proposed method.
106 - Zhile Ren , Deqing Sun , Jan Kautz 2017
Given two consecutive frames from a pair of stereo cameras, 3D scene flow methods simultaneously estimate the 3D geometry and motion of the observed scene. Many existing approaches use superpixels for regularization, but may predict inconsistent shap es and motions inside rigidly moving objects. We instead assume that scenes consist of foreground objects rigidly moving in front of a static background, and use semantic cues to produce pixel-accurate scene flow estimates. Our cascaded classification framework accurately models 3D scenes by iteratively refining semantic segmentation masks, stereo correspondences, 3D rigid motion estimates, and optical flow fields. We evaluate our method on the challenging KITTI autonomous driving benchmark, and show that accounting for the motion of segmented vehicles leads to state-of-the-art performance.
176 - He Wen , Shuchang Zhou , Zhe Liang 2016
Fully convolutional neural networks give accurate, per-pixel prediction for input images and have applications like semantic segmentation. However, a typical FCN usually requires lots of floating point computation and large run-time memory, which eff ectively limits its usability. We propose a method to train Bit Fully Convolution Network (BFCN), a fully convolutional neural network that has low bit-width weights and activations. Because most of its computation-intensive convolutions are accomplished between low bit-width numbers, a BFCN can be accelerated by an efficient bit-convolution implementation. On CPU, the dot product operation between two bit vectors can be reduced to bitwise operations and popcounts, which can offer much higher throughput than 32-bit multiplications and additions. To validate the effectiveness of BFCN, we conduct experiments on the PASCAL VOC 2012 semantic segmentation task and Cityscapes. Our BFCN with 1-bit weights and 2-bit activations, which runs 7.8x faster on CPU or requires less than 1% resources on FPGA, can achieve comparable performance as the 32-bit counterpart.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا