ﻻ يوجد ملخص باللغة العربية
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of $Delta z sim pm 0.01$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshi
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey a
We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets,