ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmology from Cosmic Shear with DES Science Verification Data

160   0   0.0 ( 0 )
 نشر من قبل Joseph Zuntz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find $sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.81 pm 0.06$ (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About $20$% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both datasets. Our uncertainties are $sim$30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of $sigma_8 (Omega_{rm m}/0.3)^{0.5}$ is present regardless of the value of $w$.



قيم البحث

اقرأ أيضاً

Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verifica tion (SV) data, using weak gravitational lensing measurements from a 139 deg$^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $0<mathcal S / mathcal N<4$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $Omega_{rm m}$ and $sigma_8$, fixing $w = -1$, $Omega_{rm b} = 0.04$, $h = 0.7$ and $n_s=1$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $sigma_{8}(Omega_{rm m}/0.3)^{0.6}=0.77 pm 0.07$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $mathcal S / mathcal N>4$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.
124 - C. Chang , V. Vikram , B. Jain 2015
We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 sq. deg from the Dark Energy Survey (DES) Science Verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for super-clusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 5-7 sigma level on a large range of scales. These measurements are consistent with simulated galaxy catalogs based on LCDM N-body simulations, suggesting low systematics uncertainties in the map. We summarize our key findings in this letter; the detailed methodology and tests for systematics are presented in a companion paper.
We describe updates to the redmapper{} algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150,mathrm{deg}^2$ of Science Verification (SV) data from the Dark E nergy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $lambda>20$ (roughly equivalent to $M_{rm{500c}}gtrsim10^{14},h_{70}^{-1},M_{odot}$) and $0.2<z<0.9$. The DR8 catalog consists of 26311 clusters with $0.08<z<0.6$, with a sharply increasing richness threshold as a function of redshift for $zgtrsim 0.35$. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the $sigma_z/(1+z)sim 0.01$ level for $zlesssim0.7$, rising to $sim0.02$ at $zsim0.9$ in DES SV. We make use of emph{Chandra} and emph{XMM} X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass--richness scatter are consistent with expectations based on prior runs of redmapper{} on SDSS data. We also show how the redmapper{} photoz{} and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.
We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeli ng of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a $0.8sigma$ reduction in the DES-inferred value for $S_8$, which decreases to a $0.5sigma$ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450 + DES-Y1 constraint on $S_8 = 0.762^{+0.025}_{-0.024}$ is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of $2.5sigma$. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak lensing surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا