ﻻ يوجد ملخص باللغة العربية
Atomic-scale helices exist as motifs for several material lattices. We examine a tight-binding model for a single one-dimensional monatomic chain with a p-orbital basis coiled into a helix. A topologically nontrivial phase emerging from this model supports a zero-energy mode localized to a boundary, always embedded within a continuum band, regardless of termination site. We identify a topological invariant for this phase that is related to the number of zero energy end modes by means of the bulk-boundary correspondence, and give strict conditions for the existence of the bound state. Another, non-topological, gapped edge mode in the model spectrum has practical consequences for surface states in e.g. trigonal tellurium and selenium and other van der Waals-bonded one-dimensional semiconductors.
We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting
The Su-Schrieffer-Heeger (SSH) model on a two-dimensional square lattice has been considered as a significant platform for studying topological multipole insulators. However, due to the highly-degenerate bulk energy bands protected by $ C_{4v} $ and
We numerically investigate the electronic structures around a vortex core in a bilayer superconducting system, with s-wave pairing, Rashba spin-orbit coupling and Zeeman magnetic field, with use of the quasiclassical Greens function method. The Barde
We propose a nonlocal manipulation method to build topological devices through emerging robust helical surface states in Z_2=0 topological systems. Specifically, in a ribbon of Z_2=0 Bernevig- Hughes-Zhang (BHZ) model with finite-size effect, if magn
Quantum simulators are an essential tool for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices led the field so far, but electronic quantum simulators are proving to be equally releva