ﻻ يوجد ملخص باللغة العربية
Carrier recombination dynamics in strip silicon nano-waveguides is analyzed through time-resolved pump-and-probe experiments, revealing a complex recombination dynamics at densities ranging from ${10^{14}}$ to ${10^{17}},$cm$^{{-3}}$. Our results show that the carrier lifetime varies as recombination evolves, with faster decay rates at the initial stages (with lifetime of ${sim 800},$ps), and much slower lifetimes at later stages (up to ${sim 300},$ns). We also observe experimentally the effect of trapping, manifesting as a decay curve highly dependent on the initial carrier density. We further demonstrate that operating at high carrier density can lead to faster recombination rates. Finally, we present a theoretical discussion based on trap-assisted recombination statistics applied to nano-waveguides. Our results can impact the dynamics of several nonlinear nanophotonic devices in which free-carriers play a critical role, and open further opportunities to enhance the performance of all-optical silicon-based devices based on carrier recombination engineering.
Nanophotonic waveguides with sub-wavelength mode confinement and engineered dispersion profiles are an excellent platform for application-tailored nonlinear optical interactions at low pulse energies. Here, we present fully air clad suspended-silicon
We demonstrate a wide range of novel functions in integrated, CMOS compatible, devices. This platform has promise for telecommunications and on-chip WDM optical interconnects for computing.
Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for Stimulated Brillouin Scattering (SBS). We theoretically show that silicon inve
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated wavegu
We designed, fabricated and tested gallium phosphide (GaP) nano-waveguides for second harmonic generation (SHG). We demonstrate SHG in the visible range around 655 nm using low power continuous-wave pump in the optical communication O-band. Our struc